Skip to main content
Log in

Microwave dielectric properties of (1 − x)(Mg0.4Zn0.6)2SiO4–xCaTiO3 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phase formation, microstructure and microwave dielectric properties of (1 − x)(Mg0.4Zn0.6)2SiO4–xCaTiO3 (MZS-C) composite ceramics synthesized by using the conventional solid-state method were systematically investigated. Three phase structure was observed in all samples by using X-ray diffraction and the back scattering electron images. Mg2SiO4 can form a solid solution with Zn2SiO4, which improved sinterability of the MZS-C composite ceramics. As the CaTiO3 content was increased from 0.06 to 0.14, dielectric constant ε r and temperature coefficient of resonant frequency τ f values of the MZS-C ceramics sintered at 1,180 °C for 4 h increased from 6.74 to 8.35 and −41.5 to −6.46 ppm/°C, respectively. Zero τ f value can be obtained by properly adjusting the x value of the (1 − x)MZS–xC ceramics. With increasing content of CaTiO3, densification temperatures of the composite ceramics were decreased. The composite ceramic with x = 0.14 sintered at 1,180 °C for 4 h exhibited excellent microwave dielectric properties of ε r = 8.35, Q × f = 28,125 GHz and τ f = −6.46 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Cava, J. Mater. Chem. 11, 54 (2001)

    Article  Google Scholar 

  2. H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Kawai, K. Kakimoto, H. Ogawa, Key Eng. Mater. 269, 195 (2004)

    Article  Google Scholar 

  3. H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, H. Ogawa, J. Electroceram. 17, 445 (2006)

    Article  Google Scholar 

  4. N.M. Alford, S.J. Penn, J. Appl. Phys. 80, 5895 (1996)

    Article  Google Scholar 

  5. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, Appl. Phys. A 81, 823 (2005)

    Article  Google Scholar 

  6. Q.L. Zhang, H. Yang, J. Mater. Sci: Mater. Electron. 18, 967 (2007)

    Google Scholar 

  7. I.H. Park, B.S. Kim, K.Y. Kim, L.H. Kim, Jpn. J. Appl. Phys. 40, 4956 (2001)

    Article  Google Scholar 

  8. K. Tang, Q. Wu, X.Y. Xiang, J. Mater. Sci.: Electron. 23, 1099 (2012)

    Google Scholar 

  9. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, H. Sugiura, Key Eng. Mater. 269, 199 (2004)

    Article  Google Scholar 

  10. J.L. Zou, Q.L. Zhang, H. Yang, H.P. Sun, Jpn. J. Appl. Phys. 45, 4143 (2006)

    Article  Google Scholar 

  11. K.X. Song, X.M. Chen, C.W. Zheng, Ceram. Int. 34, 917 (2008)

    Article  Google Scholar 

  12. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, J. Eur. Ceram. Soc. 23, 2573 (2003)

    Article  Google Scholar 

  13. G. Dou, D.X. Zhou, M. Guo, S.P. Gong, J. Alloys Compd. 513, 466 (2012)

    Article  Google Scholar 

  14. B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  15. E.R. Segnit, A. Holland, J. Am. Ceram. Soc. 48, 409 (1965)

    Article  Google Scholar 

  16. H. Horiuchi, H. Sawamoto, Am. Miner. 66, 568 (1981)

    Google Scholar 

  17. D. Behal, B. Röska, U. Gattermann, A. Reul, S.H. Park, J. Solid State Chem. 210, 144 (2014)

    Article  Google Scholar 

  18. Z. Wang, L. Song, J.J. Bian, Ceram. Int. 39, 9767 (2013)

    Article  Google Scholar 

  19. Q. Ma, S. Wu, C. Jiang, J. Li, Ceram. Int. 39, 2223 (2013)

    Article  Google Scholar 

  20. Y.G. Wu, X.H. Zhao, F. Li, Z.G. Fan, J. Electroceram. 11, 227 (2003)

    Article  Google Scholar 

  21. S.H. Yoon, G.K. Choi, D.W. Kim, S.Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 27, 3087 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Fundamental Research Program (No. 2009CB623302). The authors are thankful to Mr. Bian Jianjiang (Shanghai University) for his experimental help and Agilent Corporation for the measure of microwave dielectric properties.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Shen or Jiwei Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tang, L., Bai, W. et al. Microwave dielectric properties of (1 − x)(Mg0.4Zn0.6)2SiO4–xCaTiO3 composite ceramics. J Mater Sci: Mater Electron 25, 3601–3607 (2014). https://doi.org/10.1007/s10854-014-2062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2062-4

Keywords

Navigation