Skip to main content
Log in

One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

FeOOH/reduced graphene oxide (rGO) composites have been synthesized by a facile hydrothermal method. The morphology and structure of the obtained products were examined by scanning electron microscope, Raman, X-ray diffraction, thermo gravimetric analysis, and BET. The results show that the FeOOH nanorods were formed on graphene sheets by oxidation of graphene oxide rather than the O2 in air, and CH3COONa benefited the growth of FeOOH rods but is not necessary. The products were about 150 nm long obtained with the existence of CH3COONa, while 50 nm long without CH3COONa. The FeOOH/rGO generated with CH3COONa showed capacitance of 501.71 F/g at current density of 2 A/g in 1 mol/L NaOH, while that generated without CH3COONa showed higher specific capacitance of 537.14 F/g. The difference may be related to the amount of rGO, for the former one contained 82.61 wt% FeOOH while the later one contained 66.13 wt% FeOOH, which indicates the quantity of rGO and the their combination played an important role in the performance of the electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Yanwu, S. Murali, M.D. Stoller, K.J. Ganesh, C. Weiwei, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, S. Dong, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)

    Article  Google Scholar 

  2. Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)

    Article  Google Scholar 

  3. M. Wang, C. Wang, M. Chen, Y. Wang, Z. Shi, X. Du, T. Li, Z. Hu, New Carbon Mater. 25, 285 (2010)

    Article  Google Scholar 

  4. C. Hsieh, H. Teng, Carbon 40, 667 (2002)

    Article  Google Scholar 

  5. A. Izadi-Najafabadi, T. Yamada, D.N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, K. Hata, ACS Nano 5, 811 (2011)

    Article  Google Scholar 

  6. G. Li, Z. Feng, Y. Ou, D. Wu, R. Fu, Y. Tong, Langmuir 26, 2209 (2010)

    Article  Google Scholar 

  7. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, RSC Adv. 3, 13059 (2013)

    Article  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  9. C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324 (2011)

    Article  Google Scholar 

  10. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012)

    Article  Google Scholar 

  11. S.F. Pei, H.M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

  12. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    Article  Google Scholar 

  13. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett. 11, 2905 (2011)

    Article  Google Scholar 

  14. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, J. Phys. Chem. C 113, 14020 (2009)

    Article  Google Scholar 

  15. Q. Qu, Y. Zhu, X. Gao, Y. Wu, Adv. Energy Mater. 2, 950 (2012)

    Article  Google Scholar 

  16. J. Zhao, B. Tang, J. Cao, J. Feng, P. Liu, J. Zhao, J. Xu, Mater. Manuf. Process. 27, 119 (2012)

    Article  Google Scholar 

  17. L. Mao, K. Zhang, H. Chan, J.S. Wu, J. Mater. Chem. 22, 80 (2012)

    Article  Google Scholar 

  18. Z.C. Li, S.S. Chen, A.J. Gu, Z.X. Wang, X.H. Chen, Micro Nano Lett. 7, 757 (2012)

    Article  Google Scholar 

  19. C. Zhang, J. Zhu, X. Rui, J. Chen, D. Sim, W. Shi, H.H. Hng, T.M. Lim, Q. Yan, CrystEngComm 14, 147 (2012)

    Article  Google Scholar 

  20. Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, X. Zhang, J. Solid State Chem. 185, 191 (2012)

    Article  Google Scholar 

  21. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, J. Mater. Sci. 47, 4400 (2012)

    Article  Google Scholar 

  22. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  23. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)

    Article  Google Scholar 

  24. D.L.A. de Faria, S. Venâncio Silva, M.T. de Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  Google Scholar 

  25. D. Neff, L. Bellot-Gurlet, P. Dillmann, S. Reguer, L. Legrand, J. Raman Spectrosc. 37, 1228 (2006)

    Article  Google Scholar 

  26. A.C. Ferrari, J. Robertson, Philosophical transactions of the Royal Society of London. Ser. A: Math. Phys. Eng. Sci. 362, 2477 (2004)

    Google Scholar 

  27. X. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, J. Power Sources 243, 555 (2013)

    Article  Google Scholar 

  28. M. Kim, Y. Hwang, J. Kim, J. Power Sources 239, 225 (2013)

    Article  Google Scholar 

  29. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)

    Article  Google Scholar 

  30. Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan, Carbon 48, 1124 (2010)

    Article  Google Scholar 

  31. B. Tang, G.L. Wang, L.H. Zhuo, J.C. Ge, L.J. Cui, Inorg. Chem. 45, 5196 (2006)

    Article  Google Scholar 

  32. J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Electrochim. Acta 55, 6973 (2010)

    Article  Google Scholar 

  33. T. Xiao, X. Hu, B. Heng, X. Chen, W. Huang, W. Tao, H. Wang, Y. Tang, X. Tan, X. Huang, J. Alloy. Compd. 549, 147 (2013)

    Article  Google Scholar 

  34. J. Li, H. Xie, Y. Li, J. Power Sources 241, 388 (2013)

    Article  Google Scholar 

  35. M. Sun, G. Wang, X. Li, C. Li, J. Power Sources 245, 436 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundatioin of China (No. 51372037) and the Natural Science Foundation of Shanghai (Grant No. 12ZR1401000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changling Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Yang, C., Lu, Y. et al. One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. J Mater Sci: Mater Electron 25, 3364–3374 (2014). https://doi.org/10.1007/s10854-014-2027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2027-7

Keywords

Navigation