Skip to main content
Log in

Solvothermal synthesis of hierarchical Co3O4 flower-like microspheres for superior ethanol gas sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, hierarchical Co3O4 flower-like microspheres have been successfully synthesized on the basis of morphology-conserved transformation method. The key step of this method is to construct flower-like microstructures of the cobalt-containing precursors via manipulating the synthetic parameters in a facile ethylene glycol mediated solvothermal reaction. The as-prepared flower-like microspheres are formed from the assembly of many two-dimensional nanosheets, accompanied by an outside-in dissolution and recrystallization process. Finally, hierarchical Co3O4 microspheres with conserved flower-like morphology are obtained through the moderate calcination. When evaluated as a gas sensor, the obtained Co3O4 flower-like microspheres exhibit a good response and sensitivity towards ethanol gas, suggesting their promising potential for gas sensors application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.L. Wang, Adv. Mater. 15, 432 (2003)

    Article  Google Scholar 

  2. R.S. Devan, R.A. Patil, J.H. Lin, Y.M. Ma, Adv. Funct. Mater. 22, 3326 (2012)

    Article  Google Scholar 

  3. H. Kuhlenbeck, S. Shaikhutdinov, H.J. Freund, Chem. Rev. 113, 3986 (2013)

    Article  Google Scholar 

  4. A.L. Tiano, C. Koenigsmann, A.C. Santulli, S.S. Wong, Chem. Commun. 46, 8093 (2010)

    Article  Google Scholar 

  5. P.X. Gao, Z.L. Wang, J. Am. Chem. Soc. 125, 11299 (2003)

    Article  Google Scholar 

  6. W. Shi, S. Song, H. Zhang, Chem. Soc. Rev. 42, 5714 (2013)

    Article  Google Scholar 

  7. L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, J. Mater. Chem. A 1, 5596 (2013)

    Article  Google Scholar 

  8. A. Pan, H.B. Wu, L. Yu, X.W. Lou, Angew. Chem. Int. Edit. 52, 2226 (2013)

    Article  Google Scholar 

  9. X.Y. Yu, X.Z. Yao, T. Luo, Y. Jia, J.H. Liu, X.J. Huang, ACS Appl. Mater. Interface 6, 3689 (2014)

    Article  Google Scholar 

  10. Z. Jia, L. Yang, Q. Wang, J. Liu, M. Ye, R. Zhu, Mater. Chem. Phys. 145, 116 (2014)

    Article  Google Scholar 

  11. Z.H. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Adv. Mater. 26, 905 (2014)

    Article  Google Scholar 

  12. X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Nature 458, 746 (2009)

    Article  Google Scholar 

  13. C. Sun, S. Rajasekhara, Y. Chen, J.B. Goodenough, Chem. Commun. 47, 12852 (2011)

    Article  Google Scholar 

  14. S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Adv. Funct. Mater. 22, 861 (2012)

    Article  Google Scholar 

  15. X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6, 3206 (2012)

    Article  Google Scholar 

  16. H. Nguyen, S.A. El-Safty, J. Phys. Chem. C 115, 8466 (2011)

    Article  Google Scholar 

  17. H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K. Zhang, Y.Y. Li, Nano Res. 3, 895 (2010)

    Article  Google Scholar 

  18. Z. Fei, S. He, L. Li, W. Ji, C.T. Au, Chem. Commun. 48, 853 (2012)

    Article  Google Scholar 

  19. Y. Cao, F. Yuang, M. Yao, J.H. Bang, J.H. Lee, CrystEngComm 16, 826 (2014)

    Article  Google Scholar 

  20. L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Adv. Funct. Mater. 20, 617 (2010)

    Article  Google Scholar 

  21. B. Li, Y. Xie, C. Wu, Z. Li, J. Zhang, Mater. Chem. Phys. 99, 479 (2006)

    Article  Google Scholar 

  22. W. Mei, J. Huang, L. Zhu, Z. Ye, Y. Mai, J. Tu, J. Mater. Chem. 22, 9315 (2012)

    Article  Google Scholar 

  23. H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, ACS Appl. Mater. Interface 4, 5974 (2012)

    Article  Google Scholar 

  24. C.V. Schenck, J.G. Dillard, J. Colloid Interface Sci. 95, 398 (1983)

    Article  Google Scholar 

  25. C.C. Li, X.M. Yin, Q.H. Li, L.B. Chen, T.H. Wang, Chem. Eur. J. 17, 1596 (2011)

    Article  Google Scholar 

  26. D. Wang, Q. Wang, T. Wang, Inorg. Chem. 50, 6482 (2011)

    Article  Google Scholar 

  27. A. Cao, J.D. Monnell, C. Matranga, J. Wu, L. Cao, D. Gao, J. Phys. Chem. C 111, 18624 (2007)

    Article  Google Scholar 

  28. X. Jiang, Y. Wang, T. Herricks, Y. Xia, J. Mater. Chem. 14, 695 (2004)

    Article  Google Scholar 

  29. C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sens. Actuators B 157, 681 (2011)

    Article  Google Scholar 

  30. L. Man, B. Niu, H. Xu, B. Cao, J. Wang, Mater. Res. Bull. 46, 1097 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 21206025) and the Natural Science Foundation of Hebei Province (Grant No. B2013402008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Che, Aifeng Liu or Hongjiang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, H., Liu, A., Hou, J. et al. Solvothermal synthesis of hierarchical Co3O4 flower-like microspheres for superior ethanol gas sensing properties. J Mater Sci: Mater Electron 25, 3209–3218 (2014). https://doi.org/10.1007/s10854-014-2005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2005-0

Keywords

Navigation