Skip to main content
Log in

Hierarchical flower-like ZnO microstructures: preparation, formation mechanism and application in gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) flower-like ZnO hierarchical microstructures with high uniformity were fabricated from the decomposition of Zn(OH)4 2− precursor, which were synthesized by a facile hydrothermal reaction. XRD, FESEM and TEM were employed to characterize the morphology and structure of the products. The as-prepared flower-like ZnO microstructures with an average diameter of about 2 μm are assembled by large amounts of nanosheets, which have a thickness of ~43 nm. The morphology of the ZnO architectures can be tailored by changing hydrothermal conditions, e.g., hydrothermal temperature, reaction time, and concentration of Zn2+. On the basis of experimental results, the possible formation mechanism of the flower-like ZnO microstructures was also proposed, and the Zn2+ concentration was found to be a vital role in the growth and crystallzation of the flower-like microstructures. The Brunauer–Emmett–Teller measurement shows that the 3D flower-like ZnO hierarchical microstructures possess a specific surface area of about 34.86 m2/g. Most significantly, the gas sensing test reveals that the sensor made from 3D flower-like ZnO hierarchical microstructures exhibits outstanding gas sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Ichikawa, S. Shiratori, Inorg. Chem. 50, 999–1004 (2011)

    Article  Google Scholar 

  2. J. Li, H.Q. Fan, X.H. Jia, J. Phys. Chem. C 114, 14684–14691 (2010)

    Article  Google Scholar 

  3. J.Y. Liu, M.J. Dai, T.S. Wang, P. Sun, X.S. Liang, G.Y. Lu, K. Shimanoe, N. Yamazoe, Appl, Mater. Interfaces 8, 6669–6677 (2016)

    Article  Google Scholar 

  4. S. Thiemann, M. Gruber, I. Lokteva, J. Hirschmann, M. Halik, J. Zaumseil, Appl. Mater. Interfaces 5, 1656–1662 (2013)

    Article  Google Scholar 

  5. H.Y. Sun, Y.L. Yu, J. Luo, M. Ahmad, J. Zhu, CrystEngComm 14, 8626–8632 (2012)

    Article  Google Scholar 

  6. B.X. Li, Y.F. Wang, J. Phys. Chem. C 114, 890–896 (2010)

    Article  Google Scholar 

  7. C.K. King’ondu, A. Iyer, E.C. Njagi, N. Opembe, H. Genuino, H. Huang, R.A. Ristau, S.L. Suib, J. Am. Chem. Soc. 133, 4186–4189 (2011)

    Article  Google Scholar 

  8. R. Krishnapriya, S. Praneetha, A.V. Murugan, New J. Chem. 40, 5080–5089 (2016)

    Article  Google Scholar 

  9. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)

    Article  Google Scholar 

  10. G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese, Nano Lett. 16, 3014–3021 (2016)

    Article  Google Scholar 

  11. J. Wang, X. Li, C.J. Teng, Y. Xia, J.L. Xu, D. Xie, L. Xiang, S. Komarneni, J. Mater. Chem. C 4, 5755–5765 (2016)

    Article  Google Scholar 

  12. L. Wang, L. Feng, J.F. Liu, RSC Adv. 4, 62505–62510 (2014)

    Article  Google Scholar 

  13. S. Kuriakose, B. Satpati, S. Mohapatra. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014)

    Article  Google Scholar 

  14. T. Zhai, S.L. Xie, Y.F. Zhao, X.F. Sun, X.H. Lu, M.H. Yu, M. Xu, F.M. Xiao, Y.X. Tong, CrystEngComm 14, 1850–1855 (2012)

    Article  Google Scholar 

  15. X.S. Chen, X.Y. Jing, J. Wang, J.Y. Liu, D.L. Song, L.H. Liu, CrystEngComm 15, 7243–7249 (2013)

    Article  Google Scholar 

  16. X.F. Zhou, Z.L. Hu, Y.Q. Fan, S. Chen, W.P. Ding, N.P. Xu, J. Phys. Chem. C 112, 11722–11728 (2008)

    Article  Google Scholar 

  17. J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2, 1287–1291 (2002)

    Article  Google Scholar 

  18. R.C. Jin, J.S. Liu, Y.B. Xu, J. Mater. Chem. A 1, 7995–7999 (2013)

    Article  Google Scholar 

  19. X.Y. Liu, W.G. Bian, C.Y. Tian, Mater. Lett. 112, 1–4 (2013)

    Article  Google Scholar 

  20. G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, C. D Gu, Sol. Energy Mater. Sol. Cells 124, 103–110 (2014)

    Article  Google Scholar 

  21. C. Xu, G. Xu, Y. Liu, G.A. Wang, Solid State Commun. 122, 175–179 (2002)

    Article  Google Scholar 

  22. R. Kumar, R.K. Singh, A.R. Vaz, S.A. Moshkalev, RSC Adv 5, 67988–67995 (2015)

    Article  Google Scholar 

  23. X.W. Lou, L.A. Archer, Z.C. Yang, Adv. Mater. 20, 3987–4019 (2008)

    Article  Google Scholar 

  24. J.B. Baxter, E.S. Aydil, J. Cryst. Growth 274, 407–411 (2005)

    Article  Google Scholar 

  25. Q. Hou, L.Q. Zhu, H.L. Chen, H.C. Liu, W.P. Li, Electrochim. Acta 78, 55–64 (2012)

    Article  Google Scholar 

  26. H.H. Wang, C.S. Xie, J. Cryst. Growth 291, 187–195 (2006)

    Article  Google Scholar 

  27. W.W. Wang, Y.J. Zhu, L.X. Yang, Adv. Funct. Mater 17, 59–64 (2007)

    Article  Google Scholar 

  28. P. Colson, A. Schrijnemakers, B. Vertruyen, C. Henrist, R. Cloots, J. Mater. Chem. 22, 17086–17093 (2012)

    Article  Google Scholar 

  29. C.L. Kuo, T.J. Kuo, M.H. Huang, J. Phys. Chem. B 109, 20115–20121 (2005)

    Article  Google Scholar 

  30. H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D.J. Kim, H. Kim, S.K. Hong, J. Mater. Chem. 22, 1127–1134 (2012)

    Article  Google Scholar 

  31. P. Hu, X. Zhang, N. Han, W.C. Xiang, Y.B. Cao, F.L. Yuan, Cryst. Growth Des. 11, 1520–1526 (2011)

    Article  Google Scholar 

  32. F.F. Wang, L. Cao, A.L. Pan, R.B. Liu, X. Wang, X. Zhu, S.Q. Wang, S. B., Zou. J. Phys. Chem. C 111, 7655–7660 (2007)

    Article  Google Scholar 

  33. D.F. Zhang, L.D. Sun, J. Zhang, Z.G. Yan, C.H. Yan, Cryst. Growth Des. 8, 3609–3615 (2008)

    Article  Google Scholar 

  34. P. Li, H. Liu, B. Lu, Y. Wei, J. Phys. Chem. C 114, 21132–21137 (2010)

    Article  Google Scholar 

  35. H. Wang, Q.Q. Liang, W.J. Wang, Y.R. An, J.H. Li, L. Guo, Cryst. Growth Des 11, 2942–2947 (2011)

    Article  Google Scholar 

  36. S.W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Langmuir 27, 6059–6068 (2011)

    Article  Google Scholar 

  37. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186–196 (1999)

    Article  Google Scholar 

  38. Y.J. Sun, L. Wang, X.G. Yu, K.Z. Chen, CrystEngComm 14, 3199–3204 (2012)

    Article  Google Scholar 

  39. Y.G. Sun, R.J. Zou, W.Y. Li, Q.W. Tian, J.H. Wu, Z.G. Chen, J.Q. Hu, CrystEngComm 13, 6107–6113 (2011)

    Article  Google Scholar 

  40. Z. Jing, J. Zhan, Adv. Mater. 20, 4547–4551 (2008)

    Article  Google Scholar 

  41. J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Mater. Res. Bull. 46, 1211–1218 (2011)

    Article  Google Scholar 

  42. J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun, J. Liu, Sens. Actuators B 171–172, 572–579 (2012)

    Article  Google Scholar 

  43. J. Huang, X. Xu, C. Gu, M. Yang, M. Yang, J. Liu, J. Mater. Chem. 21, 13283–13289 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Changzhou Science, Technology Innovation Project, Production-Teaching-Research Project of Changzhou University Institute of Huaide and 2016 Research and Innovation Project for College Graduates of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Wang, M., Sun, W. et al. Hierarchical flower-like ZnO microstructures: preparation, formation mechanism and application in gas sensor. J Mater Sci: Mater Electron 28, 14702–14710 (2017). https://doi.org/10.1007/s10854-017-7338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7338-z

Navigation