Skip to main content
Log in

Versatile nanocomposite hydrogel induced by Au-Se interaction showing mechanically tough and multi-responsive self-healing properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Researchers are showing a great deal of interest in hydrogels due to the presence of high-water content, self-healing variants. Despite this, research into the development of smart hydrogels that have the combination of toughness, self-healing, and responsiveness to external stimuli is still lacking. Here, tough, and intelligent nanocomposite (NC) hydrogels have been developed by utilizing modified nano-crosslinker by means of gold-selenium (Au-Se) coordination interaction. The NC hydrogels demonstrate remarkable elasticity and strength, even when exposed to notches. With the optimal formulation, the nanocomposite hydrogel can achieve a maximum elongation of 1970%, a maximum fracture stress of 2.48 MPa, and a toughness of up to 9.95 MJ/m3, thanks to the dynamic gold crosslinks with improved branching. The presence of this structural attributes facilitates efficient energy dissipation within the hydrogel system. Combining Au-Se interaction as a healing element and the remarkable optothermal effect of nanoparticles, NC hydrogels can be quickly self-healed in near-infrared light exposure of 2 min, achieving a self-healing efficiency of 91%. Additionally, the hydrogels demonstrate repair potential when exposed to microwave irradiation, acid solution, and ultrasound stimulus. Moreover, a multi-responsive hydrogel composed of photothermal gold nanostructures can serve as a light-controlled drug carrier, which has smart drug release ability under external light stimulation. The advantageous properties of hydrogel make it a great option for biomedical and engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cioffi MOH, Bomfim ASC, Ambrogi V, Advani SG (2022) Polym Compos 43:7643–7668. https://doi.org/10.1002/pc.26887

    Article  CAS  Google Scholar 

  2. Cheng QP, Hsu SH (2023) Acta Biomater 164:124–138. https://doi.org/10.1016/j.actbio.2023.04.023

    Article  CAS  PubMed  Google Scholar 

  3. Wang TT, Fan XT, Koh JJ, He CB, Yeow CH (2022) ACS Appl Mater Interfaces 14:40590–40598. https://doi.org/10.1021/acsami.2c09889

    Article  CAS  PubMed  Google Scholar 

  4. Chae A, Murali G, Lee SY et al (2023) Adv Funct Mater 33:2213382. https://doi.org/10.1002/adfm.202213382

    Article  CAS  Google Scholar 

  5. Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG (2023) Chem Rev 123:834–873. https://doi.org/10.1021/acs.chemrev.2c00179

    Article  CAS  PubMed  Google Scholar 

  6. Guo S, Ren YK, Chang R et al (2022) ACS Appl Mater Interfaces 14:34455–34469. https://doi.org/10.1021/acsami.2c08870

    Article  CAS  PubMed  Google Scholar 

  7. Zhao YZ, Liang QD, Mugo SM, An LJ, Zhang Q, Lu YY (2022) Adv Sci 9:2201039. https://doi.org/10.1002/advs.202201039

    Article  CAS  Google Scholar 

  8. Zhang L, Zhang X, Zhang H et al (2022) Chem Eng J 434:134751. https://doi.org/10.1016/j.cej.2022.134751

    Article  CAS  Google Scholar 

  9. Wang LL, Cao QC, Wang X, Wu DC (2022) Soft Matter 18:3004–3012. https://doi.org/10.1039/d1sm01698a

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Xie XQ, Peng Y, Li JJ, Liu CS (2021) J Colloid Interface Sci 590:103–113. https://doi.org/10.1016/j.jcis.2021.01.034

    Article  CAS  PubMed  Google Scholar 

  11. Muir VG, Qazi TH, Weintraub S, Maldonado BOT, Arratia PE, Burdick JA (2022) Small 18:2201115. https://doi.org/10.1002/smll.202201115

    Article  CAS  Google Scholar 

  12. Liu Y, Lin SH, Chuang WT, Dai NT, Hsu SH (2022) ACS Appl Mater Interfaces 14:16032–16046. https://doi.org/10.1021/acsami.2c01720

    Article  CAS  PubMed  Google Scholar 

  13. Qin Y, Mo JL, Liu YH et al (2022) Adv Funct Mate 32:2201846. https://doi.org/10.1002/adfm.202201846

    Article  CAS  Google Scholar 

  14. D’Souza A, Marshall LR, Yoon J et al (2022) Nano Converg 9:18. https://doi.org/10.1186/s40580-022-00309-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sarmah D, Karak N (2022) Carbohydr Polym 289:119428. https://doi.org/10.1016/j.carbpol.2022.119428

    Article  CAS  PubMed  Google Scholar 

  16. Jiang XY, Zeng FW, Yang XF et al (2022) Acta Biomater 141:102–113. https://doi.org/10.1016/j.actbio.2021.12.036

    Article  CAS  PubMed  Google Scholar 

  17. Jing HC, Feng JY, Shi JP et al (2021) Carbohydr Polym 256:117563. https://doi.org/10.1016/j.carbpol.2020.117563

    Article  CAS  PubMed  Google Scholar 

  18. Zhang MQ, Rong MZ (2012) Sci China-Chem 55:648–676. https://doi.org/10.1007/s11426-012-4511-3

    Article  CAS  Google Scholar 

  19. Tyagi P, Deratani A, Quemener D (2013) Isr J Chem 53:53–60. https://doi.org/10.1002/ijch.201200089

    Article  CAS  Google Scholar 

  20. Li MR, Lin YS, Zhang YX, Bian LM, Zhang KY (2023) Chin J Chem 41:2697–2714. https://doi.org/10.1002/cjoc.202300167

    Article  CAS  Google Scholar 

  21. He GX, Lei H, Sun WX et al (2022) Angewandte Chemie-International Edition 61:e202201765. https://doi.org/10.1002/anie.202201765

    Article  CAS  PubMed  Google Scholar 

  22. Chen XM, Liu Y, Yin SH et al (2022) ACS Appl Mater Interfaces 14:44125–44135. https://doi.org/10.1021/acsami.2c11765

    Article  CAS  PubMed  Google Scholar 

  23. Mao YC, Kubota Y, Gong J et al (2021) Macromolecules 54:8664–8674. https://doi.org/10.1021/acs.macromol.1c00904

    Article  CAS  Google Scholar 

  24. Mao YC, Kubota Y, Feng RQ et al (2022) Macromolecules 55:3948–3957. https://doi.org/10.1021/acs.macromol.2c00529

    Article  CAS  Google Scholar 

  25. Jin BQ, Wu WQ, Yuan ZY, Wang CC (2023) Polymers 15:4025. https://doi.org/10.3390/polym15194025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao YZ, Rong ZH, Gao CAH, Wu YM, Liu YT (2023) Macromol Rapid Commun 44:2200681. https://doi.org/10.1002/marc.202200681

    Article  CAS  Google Scholar 

  27. Schoustra SK, Smulders MMJ (2023) Macromol Rapid Commun 44:2200790. https://doi.org/10.1002/marc.202200790

    Article  CAS  Google Scholar 

  28. Dai WB, Li GC, Zhang YF et al (2023) Adv Funct Mater 33:2210102. https://doi.org/10.1002/adfm.202210102

    Article  CAS  Google Scholar 

  29. Ghosh A, Panda P, Ganguly D, Chattopadhyay S, Das RK (2022) J Appl Polym Sci 139:e52483. https://doi.org/10.1002/app.52483

    Article  CAS  Google Scholar 

  30. Dutta A, Das RK (2019) Macromol Mater Eng 304:1900195. https://doi.org/10.1002/mame.201900195

    Article  CAS  Google Scholar 

  31. Li LB, Lu N, Zhang HQ et al (2023). Chem Mater 35:8733–8744. https://doi.org/10.1021/acs.chemmater.3c02088

    Article  CAS  Google Scholar 

  32. Han YY, Cao Y, Lei H (2022) Gels 8:577. https://doi.org/10.3390/gels8090577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhukhovitskiy AV, Zhong M, Keeler EG et al (2015) Nat Chem 8:33–41. https://doi.org/10.1038/nchem.2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawamoto K, Grindy SC, Liu J, Holten-Andersen N, Johnson JA (2015) ACS Macro Lett 4:458–461. https://doi.org/10.1021/acsmacrolett.5b00221

    Article  CAS  PubMed  Google Scholar 

  35. Shabbir H, Dellago C, Hartmann MA (2019) Biomimetics 4:12. https://doi.org/10.3390/biomimetics4010012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barry NPE, Sadler PJ (2014) Pure Appl Chem 86:1897–1910. https://doi.org/10.1515/pac-2014-0504

    Article  CAS  Google Scholar 

  37. Adin H, Adin MŞ (2022) Materials Testing 64:401–411. https://doi.org/10.1515/mt-2021-2038

    Article  CAS  Google Scholar 

  38. Lu CH, Yu CH, Yeh YC (2021) Acta Biomater 130:66–79. https://doi.org/10.1016/j.actbio.2021.05.055

    Article  CAS  PubMed  Google Scholar 

  39. Li BG, Zhang YD, Han YF, Guo B, Luo ZY (2019) Cellulose 26:6701–6711. https://doi.org/10.1007/s10570-019-02581-z

    Article  CAS  Google Scholar 

  40. Razaghi A, Poorebrahim M, Sarhan D, Björnstedt M (2021) Eur J Cancer 155:256–267. https://doi.org/10.1016/j.ejca.2021.07.013

    Article  CAS  PubMed  Google Scholar 

  41. Kim SJ, Choi MC, Park JM, Chung AS (2021) Int J Mol Sci 22:11844. https://doi.org/10.3390/ijms222111844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kieliszek M, Bano I (2022) EXCLI J 21:948–966. https://doi.org/10.17179/excli2022-5137

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang D, Lee J, Wu C et al (2020) Exp Mol Med 52:1198–1208. https://doi.org/10.1038/s12276-020-0408-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bjorklund G, Shanaida M, Lysiuk R et al (2022) Molecules 27:6613. https://doi.org/10.3390/molecules27196613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Das S, Shedge SV, Pal S (2013) J Phys Chem A 117:10933–10943. https://doi.org/10.1021/jp407070h

    Article  CAS  PubMed  Google Scholar 

  46. Xu HF, Xu DC, Wang YF (2017) ACS Omega 2:7185–7193. https://doi.org/10.1021/acsomega.7b01039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miranda-Quintana RA, Ayers PW, Heidar-Zadeh F (2021) Theor Chem Acc 140:1–4. https://doi.org/10.1007/s00214-021-02840-y

    Article  CAS  Google Scholar 

  48. Zhao P, Xu CQ, Sun CX et al (2020) Polym Chem 11:7087–7093. https://doi.org/10.1039/d0py01201g

    Article  CAS  Google Scholar 

  49. Qin HL, Zhang T, Li HN, Cong HP, Antonietti M, Yu SH (2017) Chem 3:691–705. https://doi.org/10.1016/j.chempr.2017.07.017

    Article  CAS  Google Scholar 

  50. Sun TB, Jin Y, Qi R, Peng SJ, Fan BZ (2013) Polym Chem 4:4017–4023. https://doi.org/10.1039/c3py00406f

    Article  CAS  Google Scholar 

  51. Sun TB, Jin Y, Qi R, Peng SJ, Fan BZ (2013) Macromol Chem Phys 214:2875–2881. https://doi.org/10.1002/macp.201300579

    Article  CAS  Google Scholar 

  52. Sun TB, Zhu CZ, Xu J (2018) Soft Matter 14:921–926. https://doi.org/10.1039/c7sm02137b

    Article  CAS  PubMed  Google Scholar 

  53. Rachid HB, Noureddine D, Benali B, Adin MŞ (2023) Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2023.2240319

    Article  Google Scholar 

  54. Cao M, Zhao P, Liu C, Xia J, Xu H (2022) Macromol Rapid Commun 43:2200083. https://doi.org/10.1002/marc.202200083

    Article  CAS  Google Scholar 

  55. Qin HL, Zhang T, Li N, Cong HP, Yu SH (2019) Nat Commun 10:2202. https://doi.org/10.1038/s41467-019-10243-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. González-Rivera J, Husanu E, Mero A et al (2020) J Mol Liq 300:112357. https://doi.org/10.1016/j.molliq.2019.112357

    Article  CAS  Google Scholar 

  57. Han ZH, Gao MJ, Wang ZH, Peng LC, Zhao YB, Sun L (2022) J Drug Deliv Sci Technol 75:103610. https://doi.org/10.1016/j.jddst.2022.103610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 21802001), Anhui Provincial Education Department Natural Science Excellent Young Scientists Foundation (Grant 2023AH030068), Foundation of Anhui Province key Laboratory of Research &Development of Chinese Medicine (Grant AKLPDCM202309).

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu: Conceptualization, Methodology, Investigation. Lu Jiang: Methodology, Investigation, Data curation. Ruonan Jiang: Investigation, Data curation. Huanhuan Liu: Conceptualization, Methodology, Writing-Reviewing & Editing, Supervision.

Corresponding author

Correspondence to Huanhuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, L., Jiang, R. et al. Versatile nanocomposite hydrogel induced by Au-Se interaction showing mechanically tough and multi-responsive self-healing properties. J Mater Sci 59, 8287–8297 (2024). https://doi.org/10.1007/s10853-024-09708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09708-z

Navigation