Skip to main content
Log in

Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A conventional solvothermal synthesis was compared to a microwave-assisted method for the synthesis of HfO2 nanoparticles. In a microwave, the reaction could be completed in 3 h, compared to 3 days in an autoclave. In the microwave synthesis, the ensemble of particles was found to have a better size dispersion and a smaller average size (4 nm). The reaction mechanism was investigated and proof for an ether elimination process was provided. Post-synthetic modification with dopamine or dodecanoic acid permitted the suspension of the synthesized particles in both polar and apolar solvents, which is an advantage for further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Kuhaili MF, Durrani SMA, Khawaja EE (2004) Characterization of hafnium oxide thin films prepared by electron beam evaporation. J Phys D 37(8):1254–1261. doi:10.1088/0022-3727/37/8/015

    Article  CAS  Google Scholar 

  • Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50(48):11312–11359. doi:10.1002/anie.201101274

    Article  CAS  Google Scholar 

  • Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 7:886–888. doi:10.1039/b717334b

    Article  Google Scholar 

  • Bilecka I, Luo L, Djerdj I, Rossell MD, Jagodic M, Jaglicic Z, Masubuchi Y, Kikkawa S, Niederberger M (2011) Microwave-assisted nonaqueous sol–gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals. J Phys Chem C 115(5):1484–1495. doi:10.1021/jp108050w

    Article  CAS  Google Scholar 

  • Boyle TJ, Steele LAM, Burton PD, Hoppe SM, Lockhart C, Rodriguez MA (2012) Synthesis and structural characterization of a family of modified hafnium tert-butoxide for use as precursors to hafnia nanoparticles. Inorg Chem 51(22):12075–12092. doi:10.1021/ic300622h

    Article  CAS  Google Scholar 

  • Buha J, Arcon D, Niederberger M, Djerdj I (2010) Solvothermal and surfactant-free synthesis of crystalline Nb2O5, Ta2O5, HfO2, and Co-doped HfO2 nanoparticles. Phys Chem Chem Phys 12(47):15537–15543. doi:10.1039/c0cp01298j

    Article  CAS  Google Scholar 

  • Chaubey GS, Yao Y, Makongo JPA, Sahoo P, Misra D, Poudeu PFP, Wiley JB (2012) Microstructural and thermal investigations of HfO2 nanoparticles. RSC Adv 2(24):9207–9213. doi:10.1039/c2ra21003g

    Article  CAS  Google Scholar 

  • Chow R, Falabella S, Loomis GE, Rainer F, Stolz CJ, Kozlowski MR (1993) Reactive evaporation of low-defect density hafnia. Appl Opt 32(28):5567–5574

    Article  CAS  Google Scholar 

  • Dahal N, Chikan V (2012) Synthesis of hafnium oxide-gold core-shell nanoparticles. Inorg Chem 51(1):518–522. doi:10.1021/ic201977d

    Article  CAS  Google Scholar 

  • Dahal N, Garcia S, Zhou JP, Humphrey SM (2012) Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6(11):9433–9446. doi:10.1021/nn3038918

    Article  CAS  Google Scholar 

  • Eliziario SA, Cavalcante LS, Sczancoski JC, Pizani PS, Varela JA, Espinosa JWM, Longo E (2009) Morphology and photoluminescence of HfO2 obtained by microwave-hydrothermal. Nanoscale Res Lett 4(11):1371–1379. doi:10.1007/s11671-009-9407-6

    Article  CAS  Google Scholar 

  • Feys J, Vermeir P, Lommens P, Hopkins SC, Granados X, Glowacki BA, Baecker M, Reich E, Ricard S, Holzapfel B, Van der Voort P, Van Driessche I (2012) Ink-jet printing of YBa2Cu3O7 superconducting coatings and patterns from aqueous solutions. J Mater Chem 22(9):3717–3726. doi:10.1039/c1jm14899k

    Article  CAS  Google Scholar 

  • Field JA, Luna-Velasco A, Boitano SA, Shadman F, Ratner BD, Barnes C, Sierra-Alvarez R (2011) Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere 84(10):1401–1407. doi:10.1016/j.chemosphere.2011.04.067

    Article  CAS  Google Scholar 

  • Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27(3):213–223. doi:10.1039/a827213z

    Article  CAS  Google Scholar 

  • Grote C, Cheema TA, Garnweitner G (2012) Comparative study of ligand binding during the postsynthetic stabilization of metal oxide nanoparticles. Langmuir 28(40):14395–14404. doi:10.1021/la301822r

    Article  CAS  Google Scholar 

  • Gruger H, Kunath C, Kurth E, Sorge S, Pufe W (2005) Study of sputtered hafnium oxide films for sensor applications. In: Theil JA, Bohm M, Gardner DS, Blalock T (eds) Materials, integration and technology for monolithic instruments, Warrendale, 2005. Materials research society symposium proceedings. Materials research society, pp 145–150

  • Huang XY, Xu Z, Chen LD (2004) The thermoelectric performance of ZrNiSiVZrO2 composites. Solid State Commun 130(3–4):181–185. doi:10.1016/j.ssc.2004.02.001

    Article  CAS  Google Scholar 

  • Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Matsumoto K, Mele P (2010) Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond Sci Technol. doi:10.1088/0953-2048/23/1/014001

    Google Scholar 

  • Meskin PE, Sharikov FY, Ivanov VK, Churagulov BR, Tretyakov YD (2007) Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment. Mater Chem Phys 104(2–3):439–443. doi:10.1016/j.matchemphys.2007.03.042

    Article  CAS  Google Scholar 

  • Molina J, Munoz AL, Calleja W, Rosales P, Torres A (2012a) High-quality spin-on glass-based oxide as a matrix for embedding HfO2 nanoparticles for metal-oxide-semiconductor capacitors. J Mater Sci 47(5):2248–2255. doi:10.1007/s10853-011-6036-0

    Article  CAS  Google Scholar 

  • Molina J, Ortega R, Calleja W, Rosales P, Zuniga C, Torres A (2012b) MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing. Mater Sci Eng B 177(16):1501–1508. doi:10.1016/j.mseb.2012.02.029

    Article  CAS  Google Scholar 

  • Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chemistry 12(28):7282–7302. doi:10.1002/chem.200600313

    Article  CAS  Google Scholar 

  • Niederberger M, Garnweitner G, Krumeich F, Nesper R, Colfen H, Antonietti M (2004a) Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem Mat 16(7):1202–1208. doi:10.1021/cm031108r

    Article  CAS  Google Scholar 

  • Niederberger M, Garnweitner G, Pinna N, Antonietti M (2004b) Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C–C bond formation. J Am Chem Soc 126(29):9120–9126. doi:10.1021/ja0494959

    Article  CAS  Google Scholar 

  • Obradors X, Puig T, Ricart S, Coll M, Gazquez J, Palau A, Granados X (2012) Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Supercond Sci Technol. doi:10.1088/0953-2048/25/12/123001

    Google Scholar 

  • Olliges-Stadler I, Rossell MD, Niederberger M (2010) Co-operative formation of monolithic tungsten oxide-polybenzylene hybrids via polymerization of benzyl alcohol and study of the catalytic activity of the tungsten oxide nanoparticles. Small 6(8):960–966. doi:10.1002/smll.200902289

    Article  CAS  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem 46(25):4630–4660. doi:10.1002/anie.200603148

    Article  CAS  Google Scholar 

  • Pinna N, Garnweitner G, Antonietti M, Niederberger M (2004) Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv Mater 16(23–24):2196. doi:10.1002/adma.200400460

    Article  CAS  Google Scholar 

  • Pinna N, Grancharov S, Beato P, Bonville P, Antonietti M, Niederberger M (2005) Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem Mat 17(11):3044–3049. doi:10.1021/cm050060+

    Article  CAS  Google Scholar 

  • Pucci A, Clavel G, Willinger MG, Zitoun D, Pinna N (2009) Transition metal-doped ZrO2 and HfO2 nanocrystals. J Phys Chem C 113(28):12048–12058. doi:10.1021/jp9029375

    Article  CAS  Google Scholar 

  • Ramadoss A, Kim SJ (2012) Synthesis and characterization of HfO2 nanoparticles by sonochemical approach. J Alloy Compd 544:115–119. doi:10.1016/j.jallcom.2012.08.005

    Article  CAS  Google Scholar 

  • Ramadoss A, Krishnamoorthy K, Kim SJ (2012) Novel synthesis of hafnium oxide nanoparticles by precipitation method and its characterization. Mater Res Bull 47(9):2680–2684. doi:10.1016/j.materresbull.2012.05.051

    Article  CAS  Google Scholar 

  • Rinkio M, Johansson A, Paraoanu GS, Torma P (2009) High-speed memory from carbon nanotube field-effect transistors with high-kappa gate dielectric. Nano Lett 9(2):643–647. doi:10.1021/nl8029916

    Article  CAS  Google Scholar 

  • Stefanic G, Music S, Molanov K (2005) The crystallization process of HfO2 and ZrO2 under hydrothermal conditions. J Alloy Compd 387(1–2):300–307. doi:10.1016/j.jallcom.2004.06.064

    Article  CAS  Google Scholar 

  • Tang J, Fabbri J, Robinson RD, Zhu YM, Herman IP, Steigerwald ML, Brus LE (2004) Solid-solution nanopartieles: use of a nonhydrolytic sol–gel synthesis to prepare HfO2 and HfxZr1−xO2 nanocrystals. Chem Mat 16(7):1336–1342. doi:10.1021/cm049945w

    Article  CAS  Google Scholar 

  • Tirosh E, Markovich G (2007) Control of defects and magnetic properties in colloidal HfO2 nanorods. Adv Mater 19(18):2608. doi:10.1002/adma.200602222

    Article  CAS  Google Scholar 

  • Tobita H, Notoh K, Higashikawa K, Inoue M, Kiss T, Kato T, Hirayama T, Yoshizumi M, Izumi T, Shiohara Y (2012) Fabrication of BaHfO3 doped Gd1Ba2Cu3O7-delta coated conductors with the high I-c of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K). Supercond Sci Technol 25(6):062002. doi:10.1088/0953-2048/25/6/062002

    Article  Google Scholar 

  • Trikeriotis M, Krysak M, Chung YS, Ouyang C, Cardineau B, Brainard R, Ober CK, Giannelis EP, Cho K (2012) Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J Photopolym Sci Technol 25(5):583–586

    Article  CAS  Google Scholar 

  • Van Driessche I, Feys J, Hopkins SC, Lommens P, Granados X, Glowacki BA, Ricart S, Holzapfel B, Vilardell M, Kirchner A, Backer M (2012) Chemical solution deposition using ink-jet printing for YBCO coated conductors. Supercond Sci Technol. doi:10.1088/0953-2048/25/6/065017

    Google Scholar 

  • Waldorf AJ, Dobrowolski JA, Sullivan BT, Plante LM (1993) Optical coatings deposited by reactive ion plating. Appl Opt 32(28):5583–5593

    Article  CAS  Google Scholar 

  • Wilk GD, Wallace RM, Anthony JM (2001) High-kappa gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275. doi:10.1063/1.1361065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. J. C. Martins and Freya Van den Broeck are acknowledged for NMR measurements. Jan Goeman is greatly thanked for GC analysis. We are grateful to Prof. De Smedt for use of the zetasizer and Bart Lukas for training. Stijn Flamee and Glenn Pollefeyt are acknowledged for TEM training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Van Driessche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Roo, J., De Keukeleere, K., Feys, J. et al. Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles. J Nanopart Res 15, 1778 (2013). https://doi.org/10.1007/s11051-013-1778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1778-z

Keywords

Navigation