Skip to main content
Log in

Remanence properties and Mössbauer analysis of the strontium hexaferrite with copper deposited by sputtering

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the remanence properties and the hyperfine parameters of the strontium hexaferrite were investigated when a copper layer was deposited on its surface using magnetron sputtering. The magnetic properties and maximum energy product were significantly improved after the copper was deposited on the hexaferrite. The magnetic interactions were studied using IRM and DCD remanent magnetization processes and by the construction of the Henkel plots and the δM curves which allowed us to assess the effect of copper on the observed enhancement of the magnetic properties. X-ray diffraction confirms the copper deposition while scanning electron microscopy shows a homogeneous deposited layer. The Mössbauer spectroscopy was used to analyze the effect of copper on the hyperfine parameters of the iron nuclei. Results showed a competition between the magnetizing-like and the demagnetizing-like interactions in the uncoated hexaferrite. However, the strength of the demagnetization-like interaction is significantly weakened because of the copper layer deposited on the hexaferrite surface. This behavior suggests the emergence of a magnetic coupling with a magnetizing effect. In addition, the Mössbauer analysis revealed that copper increased the hyperfine fields and strongly affected the electronic cloud of the 4fI and 2a iron sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kong LB, Liu L, Yang Z, Li S, Zhang T, Wang C (2018) Theory of ferrimagnetism and ferrimagnetic metal oxides. Magnetic, ferroelectric, and multiferroic metal oxides. Elsevier, pp 287–311

    Chapter  Google Scholar 

  2. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  3. Tolani SC, Golhar AR, Rewatkar KG (2019) A review of morphological, structural behaviour and technological applications of ferrites. In: AIP conference proceedings. 2104: 030032. https://doi.org/10.1063/1.5100459

  4. Asiri S, Güner S, Demir A, Yildiz A, Manikandan A, Baykal A (2017) Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J Inorg Organomet Polym Mater 28:1065–1071. https://doi.org/10.1007/s10904-017-0735-1

    Article  CAS  Google Scholar 

  5. Kumar S, Guha S, Supriya S, Kumar Pradhan L, Kar M (2019) Correlation between Crystal Structure Parameters with Magnetic and Dielectric Parameters of Cu-Doped Barium Hexaferrite. J Magn Magn Mater 499:166213. https://doi.org/10.1016/j.jmmm.2019.166213

    Article  CAS  Google Scholar 

  6. Parmar DD, Dhruv PN, Singh Meena S, Kavita S, Singh Sandhu C, Ellouze M, Jotania RB (2020) Effect of copper substitution on the structural, magnetic, and dielectric properties of M-type lead hexaferrite. J Electron Mater 49:6024–6039. https://doi.org/10.1007/s11664-020-08326-0

    Article  CAS  Google Scholar 

  7. Banerjee S, Raja SO, Sardar M, Gayathri N, Ghosh B, Dasgupta A (2011) Iron oxide nanoparticles coated with gold: enhanced magnetic moment due to interfacial effects. J Appl Phys 109:123902. https://doi.org/10.1063/1.3596760

    Article  CAS  Google Scholar 

  8. Ralbag N, Felner I, Avnir D (2019) Induction of enhanced magnetic behavior in gold, silver, and copper by doping with SrFe12O19 nanoparticles. Phys Rev B 99:064411. https://doi.org/10.1103/PhysRevB.99.064411

    Article  CAS  Google Scholar 

  9. García-Gallegos JH, Santos-López FJ, Aranda-Espinoza S, Saucedo-Anaya S, Espericueta D, Martínez-Huerta JM, Cabal-Velarde JG, Rivera JG, Lobo Guerrero A (2023) Effect of an aluminum layer deposited with magnetron sputtering on magnetic and remanence properties of Sr-hexaferrite. Mater Sci Eng B 297:116731. https://doi.org/10.1016/j.mseb.2023.116731

    Article  CAS  Google Scholar 

  10. García-Gallegos JH, Mirabal-García M, Aranda-Espinoza S, Cabal-Velarde JG, Ramírez JO, Lobo-Guerrero A (2019) Magnetic properties of SrFe12O19 covered with copper by electrodeposition and sputtering. Ceram Int 45:22675–22681. https://doi.org/10.1016/j.ceramint.2019.07.302

    Article  CAS  Google Scholar 

  11. Santos-López FJ, Espericueta D, Castaneda-Robles IE, Mirabal-García M, Aranda-Espinoza S, Martínez-Huerta JM, Guerrero AL (2019) Effect of Cu-electrodeposition on the magnetic properties of Sr-hexaferrite with porous structure. J Magn Magn Mater 479:240–246. https://doi.org/10.1016/j.jmmm.2019.02.039

    Article  CAS  Google Scholar 

  12. López FS, Guerrero AL, Espericueta D, Cabal-Velarde J, Mirabal-García M, Aranda-Espinoza S, García-Serrano J (2020) Magnetic properties of a mixed M and X type Sr-ferrite fabricated as highly porous ceramic with a copper cover. Physica B 579:411800. https://doi.org/10.1016/j.physb.2019.411800

    Article  CAS  Google Scholar 

  13. Kojima H (1982) Fundamental properties of hexagonal ferrites with magnetoplumbite structure. Handbook of ferromagnetic materials, vol 3. Elsevier, pp 305–391

    Chapter  Google Scholar 

  14. Singh VP, Jasrotia R, Kumar R, Raizada P, Thakur S, Batoo KM, Singh M (2018) A current review on the synthesis and magnetic properties of M-type hexaferrites material. World J Condens Matter Phys 8:36–61. https://doi.org/10.4236/wjcmp.2018.82004

    Article  CAS  Google Scholar 

  15. Valenzuela R (2005) Magnetic ceramics. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  16. Weber W, Back CH, Bischof A, Pescia D, Allenspach R (1995) Magnetic switching in cobalt films by adsorption of copper. Nature 374:788–790. https://doi.org/10.1038/374788a0

    Article  CAS  Google Scholar 

  17. Guerrero AL, Espericueta D, Palomares-Sánchez SA, Elizalde-Galindo JT, Watts BE, Mirabal-García M (2016) Preparation and magnetic properties of the Sr-hexaferrite with foam structure. J Magn Magn Mater 419:442–450. https://doi.org/10.1016/j.jmmm.2016.06.064

    Article  CAS  Google Scholar 

  18. Bai S, Li S, Zhang H, Chen K, Cai H (2006) Magnetic interaction of the composite mixtures Nd-Fe-B/Sm2Co17. Mod Phys Lett B 20:1543–1548. https://doi.org/10.1142/S0217984906011815

    Article  CAS  Google Scholar 

  19. Wehland F, Leonhardt R, Vadeboin F, Appel E (2005) Magnetic interaction analysis of basaltic samples and pre-selection for absolute palaeointensity measurements. Geophys J Int 162:315–320. https://doi.org/10.1111/j.1365-246X.2005.02429.x

    Article  Google Scholar 

  20. Fock J, Hansen MF, Frandsen C, Mørup S (2018) On the interpretation of Mössbauer spectra of magnetic nanoparticles. J Magn Magn Mater 445:11–21. https://doi.org/10.1016/j.jmmm.2017.08.070

    Article  CAS  Google Scholar 

  21. Boyle AJF, Hall HE (1962) The Mössbauer effect. Rep Prog Phys 25:441. https://doi.org/10.1088/0034-4885/25/1/311

    Article  CAS  Google Scholar 

  22. Willke P, Bae Y, Yang K, Lado JL, Ferrón A, Choi T, Ardavan A, Fernández-Rossier J, Heinrich AJ, Lutz CP (2018) Hyperfine interaction of individual atoms on a surface. Science 362:336–339. https://doi.org/10.1126/science.aat7047

    Article  CAS  PubMed  Google Scholar 

  23. Cohen RL (ed) (1976) Applications of Mössbauer spectroscopy. Academic Press, New York

    Google Scholar 

  24. Ovchinnikov VV (2006) Mössbauer analysis of the atomic and magnetic structure of alloys. Cambridge International Science Publishing, UK

    Google Scholar 

  25. May L (2012) An introduction to Mössbauer spectroscopy. Springer Science & Business Media, Washington, DC

    Google Scholar 

  26. Berry FJ, Dickson DP (1986) Mössbauer spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  27. Mallick PK (2023) Mossbauer spectroscopy. in Fundamentals of molecular spectroscopy. Springer, pp 417–428

    Chapter  Google Scholar 

  28. Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffr 21:67–70. https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  29. Radjehi L, Djelloul A, Bououdina M, Siab R, Tebib W (2018) Structural and magnetic properties of copper oxide films deposited by DC magnetron reactive sputtering. Appl Phys A 124:723. https://doi.org/10.1007/s00339-018-2141-0

    Article  CAS  Google Scholar 

  30. Wang X, Parry JP, Kamat H, Pan R, Zeng H (2015) Iron-copper nitride thin films fabricated by sputtering. In: Ceramic Engineering and Science Proceedings. pp. 239–250. https://doi.org/10.1002/9781119211747.ch19

    Article  Google Scholar 

  31. Roldan A, Gómez E, Pané S, Vallés E (2007) Electrodeposition of copper–magnetite magnetic composite films. J Appl Electrochem 37:575–582. https://doi.org/10.1007/s10800-006-9288-7

    Article  CAS  Google Scholar 

  32. Garcı́a-Otero J, Porto M, Rivas J (2000) Henkel plots of single-domain ferromagnetic particles. J Appl Phys 87:7376–7381. https://doi.org/10.1063/1.372996

    Article  Google Scholar 

  33. Topal U (2008) Factors influencing the remanent properties of hard magnetic barium ferrites: impurity phases and grain sizes. J Magn Magn Mater 320:331–335. https://doi.org/10.1016/j.jmmm.2007.06.025

    Article  CAS  Google Scholar 

  34. El-Hilo M, Bsoul I, Rousan A, Hudeish A (2004) Interactions effects in granular powder systems. J Magn Magn Mater 272:327–329. https://doi.org/10.1016/j.jmmm.2003.12.752

    Article  CAS  Google Scholar 

  35. Gao F, Li D, Zhang S (2003) Mössbauer spectroscopy and chemical bonds in BaFe12O19 hexaferrite. J Phys Condens Matter 15:5079–5084. https://doi.org/10.1088/0953-8984/15/29/319

    Article  CAS  Google Scholar 

  36. Malik R, Annapoorni S, Lamba S, Raghavendra Reddy V, Gupta A, Sharma P, Inoue A (2010) Mössbauer and magnetic studies in nickel ferrite nanoparticles: effect of size distribution. J Magn Magn Mater 322:3742–3747. https://doi.org/10.1016/j.jmmm.2010.07.019

    Article  CAS  Google Scholar 

  37. Sankaranarayanan VK, Pankhurst QA, Dickson DPE, Johnson CE (1993) An investigation of particle size effects in ultrafine barium ferrite. J Magn Magn Mater 125:199–208. https://doi.org/10.1016/0304-8853(93)90838-S

    Article  CAS  Google Scholar 

  38. Soria GD, Jenus P, Marco JF, Mandziak A, Sanchez-Arenillas M, Moutinho F, Prieto JE, Prieto P, Cerdá J, Tejera-Centeno C, Gallego S, Foerster M, Aballe L, Valvidares M, Vasili HB, Pereiro E, Quesada A, de la Figuera J (2019) Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study. Sci Rep 9:11777. https://doi.org/10.1038/s41598-019-48010-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F. J. Santos-López thanks to CONACYT (México) for her student Grant No. 1006975.

Author information

Authors and Affiliations

Authors

Contributions

FJS-L contributed to samples fabrication, formal analysis, writing original draft. JRM contributed to review and editing, resources, and supervision. AL-G contributed to conceptualization, formal analysis, writing—review and editing. MLM and JLPM contributed to methodology, investigation, and Mössbauer experiments. SA-E contributed to methodology, investigation, and magnetic experiments. JHG‐G contributed to methodology and magnetron sputtering experiments. All the authors review and edit the final version of the manuscript.

Corresponding author

Correspondence to A. Lobo-Guerrero.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-López, F.J., Martínez, J.R., Lobo-Guerrero, A. et al. Remanence properties and Mössbauer analysis of the strontium hexaferrite with copper deposited by sputtering. J Mater Sci 59, 6425–6435 (2024). https://doi.org/10.1007/s10853-024-09530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09530-7

Navigation