Skip to main content
Log in

Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The contamination of freshwater bodies via inappropriately released wastewater can be effectively prevented using membrane separation methods at the point of industrial discharge. Graphene oxide (GO), an allotrope of carbon, has adjustable physicochemical characteristics and a lot of potential for environmental cleanup. Due to its narrow and variable interlayer spacing the flux and dyes removal ability of GO membrane is low. To resolve this problem, current study reports the fabrication of tetramethyl thiourea (TMTU)-doped reduced GO (TMTU@rGO) using microwave method. TMTU@rGO is nanoporous material with increased surface area and pore volume as compared to GO. The prepared TMTU@rGO was utilized for the fabrication of nanofiltration membrane to remove cationic and anionic industrial dyes such as Methylene blue (MB), Rhodamine B (RB) and Congo Red (CR). The TMTU@rGO composite-based nanofiltration membrane was characterized using various characterization techniques, i.e., FTIR, EDX, XRD, SEM, BET, AFM, contact angle and zeta potential. The TMTU@rGO composite-based nanofiltration membrane showed 99% rejection with 200 L m−2 h−1 bar−1 and 180 L m−2 h−1 bar−1 flux for MB and RB, respectively, and 98% rejection with 170 L m−2 h−1 bar−1 flux for CR. It remained very stable without compromising its rejection ability and permeability till 10 cycles. TMTU@rGO composite-based nanofiltration membrane showed excellent separation efficiency and negligible matrix effect during purification of industrial wastewater. These findings have confirmed that functionalized rGO-based nanofiltration membranes can work as efficient materials for the decontamination of aqueous environment at large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data and code availability

All the data are included in the manuscript.

References

  1. Sansuk S, Srijaranai S, Srijaranai S (2016) A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environ Sci Technol 50:6477–6484

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Noroozi B, Sorial G, Bahrami H, Arami M (2008) Adsorption of binary mixtures of cationic dyes. Dyes Pigm 76:784–791

    Article  CAS  Google Scholar 

  3. Feng J, Cerniglia CE, Chen H (2012) Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite Ed) 4:568–586

    Article  PubMed  Google Scholar 

  4. Alsukaibi AKD (2022) Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes 10:1968

    Article  CAS  Google Scholar 

  5. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, Bharagava RN (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9:105012

    Article  CAS  Google Scholar 

  6. Manickam P, Vijay D (2021) Chemical hazards in textiles. In: Chemical management in textiles and fashion, pp 19–52. Woodhead Publishing

  7. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290

    Article  Google Scholar 

  8. Kumar D, Pandit PD, Patel Z, Bhairappanavar SB, Das J (2019) Perspectives, scope, advancements, and challenges of microbial technologies treating textile industry effluents. In: Microbial wastewater treatment, pp 237–260. Elsevier

  9. Liu T, Liu X, Graham N, Yu W, Sun K (2020) Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J Membr Sci 593:117431

    Article  CAS  Google Scholar 

  10. Zhang W, Xu H, Xie F, Ma X, Niu B, Chen M, Zhang H, Zhang Y, Long D (2022) General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat Commun 13:471

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254

    Article  CAS  Google Scholar 

  12. Anand A, Unnikrishnan B, Mao JY, Lin HJ, Huang CC (2018) Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling: a review. Desalination 429:119–133

    Article  CAS  Google Scholar 

  13. Soni J, Sethiya A, Sahiba N, Dhaka MS, Agarwal S (2021) New Insights into the Microstructural Analysis of Graphene Oxide. Curr Org Synth 18:388–398

    Article  CAS  PubMed  Google Scholar 

  14. Yang E, Ham MH, Park HB, Kim CM, Song JH, Kim IS (2018) Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J Membr Sci 547:73–79

    Article  CAS  Google Scholar 

  15. López-Diaz D, Merchán MD, Velázquez MM (2020) The behavior of graphene oxide trapped at the air water interface. Adv Colloid Interface Sci 286:102312

    Article  PubMed  Google Scholar 

  16. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Joshi R, Carbone P, Wang F-C, Kravets VG, Su Y, Grigorieva IV, Wu H, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–754

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhu M, Chen M, Ma L, Yang B, Li L, Tu W (2019) A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chem Eng J 359:47–57

    Article  CAS  Google Scholar 

  19. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23(29):3693–3700

    Article  CAS  Google Scholar 

  20. Goh K, Jiang W, Karahan HE, Zhai S, Wei L, Yu D, Chen Y (2015) All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv Funct Mater 25(47):7348–7359

    Article  CAS  Google Scholar 

  21. Yu J, Wang Y, He Y, Gao Y, Hou R, Ma J, Chen L (2021) Calcium ion-sodium alginate double cross-linked graphene oxide nanofiltration membrane with enhanced stability for efficient separation of dyes. Sep Purif Technol 276:119348

    Article  CAS  Google Scholar 

  22. Zhu Z, Wang L, Xu Y, Li Q, Jiang J, Wang X (2017) Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. J Colloid Interface Sci 504:429–439

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Zhang Y, Huang LJ, Wang YX, Tang JG, Wang Y, Cheng MM, Hedayati M (2019) The preparation and study of ethylene glycol-modified graphene oxide membranes for water purification. Polymers 11(2):188

    Article  PubMed  PubMed Central  Google Scholar 

  24. Akram MY, Hameed MU, Akhtar N, Ali S, Maitlo I, Zhu XQ, Jun N (2019) Synthesis of high performance Ni3C-Ni decorated thermally expanded reduced graphene oxide (TErGO/Ni3C-Ni) nanocomposite: a stable catalyst for reduction of Cr (VI) and organic dyes. J Hazard Mater 366:723–731

    Article  CAS  PubMed  Google Scholar 

  25. Mughal Z, Shaikh H, Baig JA, Memon S, Sirajuddin, Shah S (2022) Fabrication of an imprinted polymer based graphene oxide composite for label-free electrochemical sensing of Sus DNA. New J Chem 46:16509–16522

    Article  CAS  Google Scholar 

  26. Mallah SA, Shaikh H, Memon N, Qazi S (2023) Fabrication of 1-octane sulphonic acid modified nanoporous graphene with tuned hydrophilicity for decontamination of industrial wastewater from organic and inorganic contaminants. RSC Adv 13:21926–21944

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nawaz M, Shaikh H, Buledi JA, Solangi AR, Raza R, Maher B (2023) Microwave-assisted synthesis of cadmium/reduced graphene oxide composite: an operative platform for highly specific electrochemical determination of bisphenol-A. J Appl Electrochem 53:751–764

    Article  CAS  Google Scholar 

  28. Li Y, Luo H, Ji W, Li S, Nian P, Xu N, Ye N, Wei Y (2023) Visible-light-driven photocatalytic ZnO@ Ti3C2Tx MXene nanofiltration membranes for enhanced organic dyes removal. Sep Purif Technol 323:124420

    Article  CAS  Google Scholar 

  29. Yang J, Gong D, Li G, Zeng G, Wang Q, Zhang Y, Liu G, Wu P, Vovk E, Peng Z (2018) Self‐assembly of thiourea‐crosslinked graphene oxide framework membranes toward separation of small molecules. Adv Mater 30:1705775

    Article  Google Scholar 

  30. Tiwari D, Fermin DJ, Chaudhuri T, Ray A (2015) Solution processed bismuth ferrite thin films for all-oxide solar photovoltaics. J Phys Chem C 119:5872–5877

    Article  CAS  Google Scholar 

  31. Qin H, Gu X, Dong D, Lu S, Zhang Y, Xu J, Fan H (2023) Aramid nanofiber based Ag/Fe3O4-CNT/rGO hybrid membrane for high-performance electromagnetic interference shielding. Next Mater 1:100017

    Article  Google Scholar 

  32. Gurbani N, Han C-P, Marumoto K, Liu R-S, Choudhary RJ, Chouhan N (2018) Biogenic reduction of graphene oxide: an efficient superparamagnetic material for photocatalytic hydrogen production. ACS Appl Energy Mater 1:5907–5918

    Article  CAS  Google Scholar 

  33. Akhtar S, Hassan F, Ahmad S, El-Affendi MA, Khan MI (2023) The prevalence of prostate cancer in Pakistan: A systematic review and meta-analysis. Heliyon 9:e20350

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xiang Z, Zhou X, Wan G, Zhang G, Cao D (2014) Improving energy conversion efficiency of dye-sensitized solar cells by modifying TiO2 photoanodes with nitrogen-reduced graphene oxide. ACS Sustain Chem Eng 2:1234–1240

    Article  CAS  Google Scholar 

  35. Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM (2012) Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express 20:19463–19473

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Thebo KH, Qian X, Zhang Q, Chen L, Cheng H-M, Ren W (2018) Pressureinduced emission of cesium lead halide perovskite nanocrystals. Nat Commun 9:1–8

    ADS  CAS  Google Scholar 

  37. Ngidi NP, Ollengo MA, Nyamori VO (2019) Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide. Materials 12:3376

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ossonon BD, Bélanger D (2017) Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Adv 7(44):27224–27234

    Article  ADS  CAS  Google Scholar 

  39. Wu Z, Gao L, Wang J, Zhao F, Fan L, Hua D, Zhan G (2020) Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. J Membr Sci 601:117948

    Article  CAS  Google Scholar 

  40. Zhan Y, He S, Wan X, Zhao S, Bai Y (2018) Thermally and chemically stable poly (arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J Membr Sci 567:76–88

    Article  CAS  Google Scholar 

  41. Qing W, Shi X, Deng Y, Zhang W, Wang J, Tang CY (2017) Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. J Membr Sci 540:354–361

    Article  CAS  Google Scholar 

  42. Gurunathan S, Woong Han J, Kim E, Kwon D-N, Park J-K, Kim J-H (2014) Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. J Nanobiotechnol 12:1–16

    Article  Google Scholar 

  43. Tran DN, Kabiri S, Losic D (2014) A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193–202

    Article  CAS  Google Scholar 

  44. Cheng M-M, Huang L-J, Wang Y-X, Zhao Y-C, Tang J-G, Wang Y, Zhang Y, Hedayati M, Kipper MJ, Wickramasinghe SR (2019) Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J Mater Sci 54:252–264

    Article  ADS  CAS  Google Scholar 

  45. Du Y-C, Huang L-J, Wang Y-X, Yang K, Zhang Z-J, Wang Y, Kipper MJ, Belfiore LA, Tang J-G (2020) Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment. J Mater Sci 55:11188–11202

    Article  ADS  CAS  Google Scholar 

  46. Rashtbari Y, Sher F, Afshin S, Hamzezadeh A, Ahmadi S, Azhar O, Rastegar A, Ghosh S, Poureshgh Y (2022) Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere 287:132114

    Article  CAS  PubMed  Google Scholar 

  47. Deng H, Huang J, Qin C, Xu T, Ni H, Ye P (2021) Preparation of high-performance nanocomposite membranes with hydroxylated graphene and graphene oxide. J Water Process Eng 40:101945

    Article  Google Scholar 

  48. Wang Q, Yu Z, Liu Y, Zhu X, Long R, Li X (2021) Electrostatic self-assembly method to prepare intercalated graphene oxide composite membrane to improve hydrophilicity and flux. Diamond Related Mater 117:108492

    Article  ADS  CAS  Google Scholar 

  49. Janjhi FA, Chandio I, Memon AA, Ahmed Z, Thebo KH, Pirzado AAA, Hakro AA, Iqbal M (2021) Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep Purif Technol 274:117969

    Article  Google Scholar 

  50. Kavitha B, Selvam S, Subburam S (2023) Fabrication of MnWO4 modified ZnS nanocomposite as an effective nanoadsorbent: experimental investigation and neural network modeling. J Water Environ Nanotechnol 8:79–93

    CAS  Google Scholar 

  51. He Y, Li G, Wang H, Zhao J, Su H, Huang Q (2008) Effect of operating conditions on separation performance of reactive dye solution with membrane process. J Membr Sci 321(2):183–189

    Article  CAS  Google Scholar 

  52. David PS, Karunanithi A, Fathima NN (2020) Improved filtration for dye removal using keratin–polyamide blend nanofibrous membranes. Environ Sci Pollut Res 27:45629–45638

    Article  CAS  Google Scholar 

  53. Ikram M, Umar E, Raza A, Haider A, Naz S, Ul-Hamid DA, Haider J, Shahzadi I, Hassan J, Ali S (2020) Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation. RSC Adv 10:24215–24233

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeng H, Yu Z, Shao L, Li X, Zhu M, Liu Y, Feng X, Zhu X (2021) A novel strategy for enhancing the performance of membranes for dyes separation: embedding PAA@ UiO-66-NH2 between graphene oxide sheets. Chem Eng J 403:126281

    Article  CAS  Google Scholar 

  55. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  56. Freundlich HMF (1906) Over the Adsorption in Solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  57. Mckay G, Blair H, Gardner JR (1982) Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27:3043–3057

    Article  CAS  Google Scholar 

  58. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  59. Ho Y-S, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  60. Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161:387–395

    Article  CAS  PubMed  Google Scholar 

  61. Zhang P, Gong JL, Zeng GM, Deng CH, Yang HC, Liu HY, Huan SY (2017) Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem Eng J 322:657–666

    Article  CAS  Google Scholar 

  62. Cheng P, Chen Y, Gu YH, Yan X, Lang WZ (2019) Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. J Mater Sci 591:117308. 10.1016/j.memsci.2019.117308

    CAS  Google Scholar 

  63. Guan K, Zhao D, Zhang M, Shen J, Zhou G, Liu G, Jin W (2017) 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J Membr Sci 542:41–51

    Article  CAS  Google Scholar 

  64. Gao Y, Yan S, He Y, Fan Y, Zhang L, Ma J, Chen J (2021) A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance. J Membr Sci 626:119192

    Article  CAS  Google Scholar 

  65. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the National Centre of Excellence in Analytical Chemistry for providing financial support to accomplish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Solangi.

Ethics declarations

Conflict of interest

All the authors declare that they do not have any conflict of interest for the data presented in this manuscript.

Ethical approval

The work does not require Ethical Approval as no experiment is carried on living beings.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qazi, S., Shaikh, H., Solangi, A.R. et al. Fabrication of nanofiltration membrane with enhanced water permeability and dyes removal efficiency using tetramethyl thiourea-doped reduced graphene oxide. J Mater Sci 59, 4461–4482 (2024). https://doi.org/10.1007/s10853-024-09489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09489-5

Navigation