Skip to main content
Log in

Improvement of capacitive and resistive memory in WO3 thin film with annealing

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, electron beam evaporated tungsten oxide (WO3) thin film (TF) has been investigated for both capacitive and resistive switching memory devices. The fabricated samples underwent annealing at a temperature of 500 °C. Capacitance–voltage (CV) and conductance–voltage were found to decrease with the increase in frequency for both the as-depo and annealed Au/WO3 TF/Si devices. The decrease in the interface trap density (Dit) from 1.27 × 1011 eV−1 cm−2 (as-depo WO3 TF) to 1.81 × 1010 eV−1 cm−2 (annealed WO3 TF) was attributed to the reduced number of defects. A large memory window of 9.76 V at ± 10 V was exhibited for annealed WO3 TF in the CV hysteresis loop. A stable high resistance state and low resistance state were obtained for the annealed device up to 105 s without any distinct deterioration. The effects of crystallization are comprehensively explored to explicate the alteration in the resistive switching characteristics and its fundamental mechanism. The observed alterations in resistive switching behavior have been attributed to the processes of charge-trapping de-trapping and the migration of oxygen vacancies within the film. Our work offers insights into the charge-trapping mechanisms in WO3 TF-based nonvolatile memory devices, highlighting the impact of annealing on their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Joo SS, Kim J, Kang SS et al (2014) Graphene-quantum-dot nonvolatile charge-trap flash memories. Nanotechnology 25:255203. https://doi.org/10.1088/0957-4484/25/25/255203

    Article  CAS  Google Scholar 

  2. Hashemi A, Bahari A (2018) Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: the influence of Si semiconductor film type on the interface traps by deconvolution of Si2s. Curr Appl Phys 18:1546–1552. https://doi.org/10.1016/j.cap.2018.09.014

    Article  ADS  Google Scholar 

  3. Bahari A, Ghovati M, Hashemi A (2019) Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage. Appl Phys A 125:257. https://doi.org/10.1007/s00339-019-2547-3

    Article  CAS  ADS  Google Scholar 

  4. Hashemi A, Bahari A, Ghasemi S (2018) Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor. J Electron Mater 47:3717–3726. https://doi.org/10.1007/s11664-018-6231-8

    Article  CAS  ADS  Google Scholar 

  5. Zhao G, Yin Y, Peng Y et al (2019) Effect of hydrogen ions in the adsorbed water layer on the resistive switching properties of hexagonal WO3 nanowire. J Appl Phys 126:054303. https://doi.org/10.1063/1.5093277

    Article  CAS  ADS  Google Scholar 

  6. Lamichhane S, Sharma S, Tomar M, Gupta V (2020) Non-volatile resistive switching in WO3thin films. In: AIP conference proceedings. AIP Publishing. Bikaner, p 040035

  7. Dongale TD, Mohite SV, Bagade AA et al (2015) Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method. Electron Mater Lett 11:944–948. https://doi.org/10.1007/s13391-015-4180-4

    Article  CAS  ADS  Google Scholar 

  8. Dongale TD, Mohite SV, Bagade AA et al (2017) Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device. Microelectron Eng 183:12–18. https://doi.org/10.1016/j.mee.2017.10.003

    Article  CAS  Google Scholar 

  9. Nowak E, Chłopocka E, Szybowicz M (2023) ZnO and ZnO-based materials as active layer in resistive random-access memory (RRAM). Crystals 13:416. https://doi.org/10.3390/cryst13030416

    Article  CAS  Google Scholar 

  10. Yu Z, Han X, Xu J et al (2023) The effect of nitrogen annealing on the resistive switching characteristics of the W/TiO2/FTO memory device. Sensors 23:3480. https://doi.org/10.3390/s23073480

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Ielmini D, Nardi F, Cagli C, Lacaita AL (2010) Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electron Device Lett 31:353–355. https://doi.org/10.1109/LED.2010.2040799

    Article  CAS  ADS  Google Scholar 

  12. Liang K-D, Huang C-H, Lai C-C et al (2014) Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl Mater Interfaces 6:16537–16544. https://doi.org/10.1021/am502741m

    Article  CAS  PubMed  Google Scholar 

  13. Rajkumari R, Singh NK (2020) Ag nanoparticle-decorated WO3 nanowires for nonvolatile memory. ACS Appl Nano Mater 3:12087–12094. https://doi.org/10.1021/acsanm.0c02584

    Article  CAS  Google Scholar 

  14. Qu B, Younis A, Chu D (2016) Recent progress in tungsten oxides based memristors and their neuromorphological applications. Electron Mater Lett 12:715–731. https://doi.org/10.1007/s13391-016-6129-7

    Article  CAS  ADS  Google Scholar 

  15. He X, Yin Y, Guo J et al (2013) Memristive properties of hexagonal WO3 nanowires induced by oxygen vacancy migration. Nanoscale Res Lett 8:50. https://doi.org/10.1186/1556-276X-8-50

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Abbas Y, Han IS, Sokolov AS et al (2020) Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics. J Mater Sci Mater Electron 31:903–909. https://doi.org/10.1007/s10854-019-02598-x

    Article  CAS  Google Scholar 

  17. Yang YC, Pan F, Zeng F, Liu M (2009) Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: from carrier trapping/detrapping to electrochemical metallization. J Appl Phys 106:123705. https://doi.org/10.1063/1.3273329

    Article  CAS  ADS  Google Scholar 

  18. Ismail M, Khan SA, Rahmani MK et al (2020) Oxygen annealing effect on resistive switching characteristics of multilayer CeO2/Al/CeO2 resistive random-access memory. Mater Res Express 7:016307. https://doi.org/10.1088/2053-1591/ab61b1

    Article  CAS  ADS  Google Scholar 

  19. Shang DS, Shi L, Sun JR et al (2010) Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing. Appl Phys Lett 96:072103. https://doi.org/10.1063/1.3300637

    Article  CAS  ADS  Google Scholar 

  20. Tracy CE, Benson DK (1986) Preparation of amorphous electrochromic tungsten oxide and molybdenum oxide by plasma enhanced chemical vapor deposition. J Vac Sci Technol A Vac Surf Films 4:2377–2383. https://doi.org/10.1116/1.574080

    Article  CAS  ADS  Google Scholar 

  21. Qu B, Du H, Wan T et al (2017) Synaptic plasticity and learning behavior in transparent tungsten oxide-based memristors. Mater Des 129:173–179. https://doi.org/10.1016/j.matdes.2017.05.022

    Article  CAS  Google Scholar 

  22. Aktağ A, Mutale A, Yılmaz E (2020) Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor. J Mater Sci Mater Electron 31:9044–9051. https://doi.org/10.1007/s10854-020-03438-z

    Article  CAS  Google Scholar 

  23. Rajkumari R, Singh NK (2020) Effect of Annealing on Morphology and Photoluminescence of WO3 Nanowires Deposited by Glancing Angle Deposition Techniques. j nanosci nanotechnol, 20:3274–3282. https://doi.org/10.1166/jnn.2020.17395

  24. Mohamedkhair AK, Drmosh QA, Qamar M, Yamani ZH (2021) Tuning structural properties of WO3 thin films for photoelectrocatalytic water oxidation. Catalysts 11:381. https://doi.org/10.3390/catal11030381

    Article  CAS  Google Scholar 

  25. Kalanur SS (2019) Structural, optical, band edge and enhanced photoelectrochemical water splitting properties of tin-doped WO3. Catalysts 9:456. https://doi.org/10.3390/catal9050456

    Article  CAS  Google Scholar 

  26. Liang Y-C, Chang C-W (2019) Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability. Coatings 9:90. https://doi.org/10.3390/coatings9020090

    Article  CAS  Google Scholar 

  27. Nayak AK, Ghosh R, Santra S et al (2015) Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds. Nanoscale 7:12460–12473. https://doi.org/10.1039/C5NR02571K

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wang J, Chen Z, Zhai G, Men Y (2018) Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations. Appl Surf Sci 462:760–771. https://doi.org/10.1016/j.apsusc.2018.08.181

    Article  CAS  ADS  Google Scholar 

  29. Al-Ghamdi AA, Bostancı H, Al-Hartomy OA et al (2014) Preparation of tungsten trioxide nanorods by hydrothermal route: n-tungsten trioxide nanorods/p-silicon pn junction. J Nanoelectron Optoelectron 9:327–333. https://doi.org/10.1166/jno.2014.1600

    Article  CAS  Google Scholar 

  30. Mutale A, Deevi SC, Yilmaz E (2021) Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors. J Alloy Compd 863:158718. https://doi.org/10.1016/j.jallcom.2021.158718

    Article  CAS  Google Scholar 

  31. Ito D, Fujimura N, Yoshimura T, Ito T (2003) Influence of Schottky and Poole-Frenkel emission on the retention property of YMnO3-based metal/ferroelectric/insulator/semiconductor capacitors. J Appl Phys 94:4036–4041. https://doi.org/10.1063/1.1601292

    Article  CAS  ADS  Google Scholar 

  32. Cho E, Han S (2011) Electronic structure of Pt/HfO2 interface with oxygen vacancy. Microelectron Eng 88:3407–3410. https://doi.org/10.1016/j.mee.2009.11.009

    Article  CAS  Google Scholar 

  33. Tugay E, Yilmaz E, Turan R (2012) Influence of gamma irradiation on the CV characteristics of the Al/SiNx/Si MIS capacitors. J Vac Sci Technol A Vac Surf Films 30:041507. https://doi.org/10.1116/1.4720351

    Article  CAS  ADS  Google Scholar 

  34. Abubakar S, Yilmaz E (2018) Optical and electrical properties of e-beam deposited TiO2/Si thin films. J Mater Sci Mater Electron 29:9879–9885. https://doi.org/10.1007/s10854-018-9029-9

    Article  CAS  Google Scholar 

  35. Kuhn M (1970) A quasi-static technique for MOS CV and surface state measurements. Solid State Electron 13:873–885. https://doi.org/10.1016/0038-1101(70)90073-0

    Article  ADS  Google Scholar 

  36. Ali SM, Khan MAM (2020) Annealing effects on structural, optical and electrical properties of TiO2/FTO heterojunction. Appl Phys A 126:468. https://doi.org/10.1007/s00339-020-03656-6

    Article  CAS  ADS  Google Scholar 

  37. Choi W, Jang K, Raja J et al (2013) Improvement of memory window and retention with low trap density in hydrogenated-amorphous-silicon-germanium nonvolatile memory. Semicond Sci Technol 28:035014. https://doi.org/10.1088/0268-1242/28/3/035014

    Article  CAS  ADS  Google Scholar 

  38. Jeff RC, Yun M, Ramalingam B et al (2011) Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based non-volatile memory. Appl Phys Lett 99:072104. https://doi.org/10.1063/1.3625426

    Article  CAS  ADS  Google Scholar 

  39. Yang S-M, Chien C-H, Huang J-J et al (2007) Cerium oxide nanocrystals for nonvolatile memory applications. Appl Phys Lett 91:262104. https://doi.org/10.1063/1.2821367

    Article  CAS  ADS  Google Scholar 

  40. Lin C-C, Kuo Y (2013) Temperature effects on nanocrystalline molybdenum oxide embedded ZrHfO high-k nonvolatile Memory Functions. ECS J Solid State Sci Technol 2:Q16–Q22. https://doi.org/10.1149/2.027301jss

    Article  CAS  Google Scholar 

  41. Guo T, Tan T, Liu Z (2016) Resistive switching behavior of HfO2 film with different Ti doping concentrations. J Phys D Appl Phys 49:045103. https://doi.org/10.1088/0022-3727/49/4/045103

    Article  CAS  ADS  Google Scholar 

  42. Pawar PS, Tikke RS, Patil VB et al (2017) A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Mater Sci Semicond Process 71:102–108. https://doi.org/10.1016/j.mssp.2017.07.009

    Article  CAS  Google Scholar 

  43. Park D, Yang P, Kim HJ et al (2018) Analog reversible nonvolatile memcapacitance in metal-oxide-semiconductor memcapacitor with ITO/HfOx/Si structure. Appl Phys Lett 113:162102. https://doi.org/10.1063/1.5043275

    Article  CAS  ADS  Google Scholar 

  44. Dongale TD, Bagade AA, Mohite SV et al (2018) Bipolar resistive switching with coexistence of mem-elements in the spray deposited CoFe2O4 thin film. J Mater Sci Mater Electron 29:3231–3238. https://doi.org/10.1007/s10854-017-8258-7

    Article  CAS  Google Scholar 

  45. Chen B, Lu Y, Gao B, et al (2011) Physical mechanisms of endurance degradation in TMO-RRAM. In: 2011 international electron devices meeting. IEEE, Washington, DC, USA, p 12.3.1–12.3.4

  46. Hong SM, Kim H-D, Yun MJ et al (2015) Improved resistive switching properties by nitrogen doping in tungsten oxide thin films. Thin Solid Films 583:81–85. https://doi.org/10.1016/j.tsf.2015.03.049

    Article  CAS  ADS  Google Scholar 

  47. Rajkumari R, Ngangbam C, Singh NK (2021) Presence of capacitive memory in GLAD-synthesized WO3 nanowire. J Mater Sci Mater Electron 32:3191–3200. https://doi.org/10.1007/s10854-020-05067-y

    Article  CAS  Google Scholar 

  48. Li Y, Long S, Liu Q et al (2010) Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Phys Rapid Res Lett 4:124–126. https://doi.org/10.1002/pssr.201004086

    Article  CAS  Google Scholar 

  49. Lahiri R, Mondal A (2018) Superior memory of Er-doped TiO2 nanowire MOS capacitor. IEEE Electron Device Lett 39:1856–1859. https://doi.org/10.1109/LED.2018.2874272

    Article  CAS  ADS  Google Scholar 

  50. Nonglen Meitei Ph, Singh NK (2023) Effect of annealing on forming-free bipolar resistive switching of Gd2O3 thin films. J Alloy Compd 941:168900. https://doi.org/10.1016/j.jallcom.2023.168900

    Article  CAS  Google Scholar 

  51. Kim J, Inamdar AI, Jo Y et al (2016) Effect of electronegativity on bipolar resistive switching in a WO3-based asymmetric capacitor structure. ACS Appl Mater Interfaces 8:9499–9505. https://doi.org/10.1021/acsami.5b11781

    Article  CAS  PubMed  Google Scholar 

  52. Pooja P, Chinnamuthu P (2023) Improved capacitive memory in glancing angle electron-beam synthesized isotropic bilayer n-TiO2/In2O3 nanowires array. IEEE Trans Nanotechnol 22:70–75. https://doi.org/10.1109/TNANO.2023.3243112

    Article  CAS  ADS  Google Scholar 

  53. Ghosh A, Lahiri R, Dhar Dwivedi SMM, Mondal A (2020) Experimental and theoretical study of capacitive memory of metal-oxide-semiconductor devices based on Er-doped In2O3 nano-column arrays. J Appl Phys 128:095704. https://doi.org/10.1063/5.0013904

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No: GRANT 5,239]. The authors extend their heartfelt appreciation to National Institute of Technology Durgapur, India, for granting access to the FEGSEM facility, CSIR-NEIST, Jorhat-6, Assam, India for XPS and to National Institute of Technology Nagaland, India for their support in XRD characterization and financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

RR contributed to data curation, investigation, conceptualization, fabrication, formal analysis, validation, writing—original draft, visualization. MWA contributed to conceptualization, validation, resources, formal analysis, and project administration. BS contributed to validation, resources, formal analysis. NKS contributed to conceptualization, data curation, supervision, writing—review & editing, validation, visualization.

Corresponding authors

Correspondence to Mir Waqas Alam or Naorem Khelchand Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumari, R., Alam, M.W., Souayeh, B. et al. Improvement of capacitive and resistive memory in WO3 thin film with annealing. J Mater Sci 59, 3270–3283 (2024). https://doi.org/10.1007/s10853-024-09422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09422-w

Navigation