Skip to main content

Advertisement

Log in

A review of preparation methods, friction and wear, corrosion, and biocompatibility of biomedical high-entropy alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent decades, biomedical materials have received increasing attention and are widely used in medical applications, such as implantable prostheses, tissue repair, and regeneration, to advance patient care. As implants continue to be applied in clinical settings, the design requirements for new biocompatible alloys also increase. Therefore, developing new materials with high strength, low modulus, and good biocompatibility is a continuous demand in the field of surgical implants. By breaking the classical alloy design concept, high-entropy alloys (HEAs) have a unique lattice structure, which is a solid solution randomly arranged with multiple elements. The special locally disordered chemical environment is expected to make the alloy has excellent yield strength, wear resistance, corrosion resistance, and biocompatibility. Hence, this review summarizes the research on HEAs in biomedical applications, mainly focusing on their preparation methods, wear resistance, corrosion resistance, as well as in vivo and in vitro implantation. It aims to provide valuable reference for material researchers in the application research of biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Monika S, Yashpal S, Pooja A, Vipin A, Krati J (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3(1):52–57. https://doi.org/10.12998/wjcc.v3.i1.52

    Article  Google Scholar 

  2. Ludwigson DC (1965) Title of the pape Metal Eng 5(1):1–10

    CAS  Google Scholar 

  3. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. Interface 5(27):1137–1158. https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  Google Scholar 

  4. Pilliar RM (2009) Metallic biomaterials, 2nd edn. Springer, New York, p 41

    Google Scholar 

  5. Escalas F, Galante J, Rostoker W, Coogan P (1976) Biocompatibility of materials for total joint replacement. J Biomed Mater Res 10(2):175–195. https://doi.org/10.1002/jbm.820100203

    Article  CAS  Google Scholar 

  6. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  7. Chen Q, Thouas GA (2012) Metallic implant biomaterials. Mater Sci Eng R 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  8. Manmeet K, Singh K (2019) Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mat Sci Eng C. https://doi.org/10.1016/j.msec.2019.04.064

    Article  Google Scholar 

  9. Ma N, Liu SF, Liu W, Xie LC, Wei DX, Wang LQ, Li LJ, Zhao BB, Wang Y (2020) Research progress of titanium-based high entropy alloy: methods, properties, and applications. Front Bioeng Biotech 8:603522. https://doi.org/10.3389/fbioe.2020.603522

    Article  Google Scholar 

  10. Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang JL (2020) The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotech 8:822. https://doi.org/10.3389/fbioe.2020.00822

    Article  Google Scholar 

  11. Choi-Yim H, Johnson WL (1997) Bulk metallic glass matrix composites. Appl Phys Lett 71:3808–3810. https://doi.org/10.1063/1.120512

    Article  CAS  Google Scholar 

  12. Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63:2342–2344. https://doi.org/10.1063/1.110520

    Article  Google Scholar 

  13. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  14. Zhou YJ, Zhang Y, Wang YL, Chen GL (2007) Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett 90(18):181904. https://doi.org/10.1063/1.2734517

    Article  CAS  Google Scholar 

  15. Edalati P, Mohammadi A, Ketabchi M, Edalati K (2021) Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion. J Alloy Compd 884:161101. https://doi.org/10.1016/j.jallcom.2021.161101

    Article  CAS  Google Scholar 

  16. Shuang S, Yua Q, Gao X, He QF, Zhang JY, Shi SQ, Yang Y (2022) Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. J Mater Sci Technol 109(14):197–208. https://doi.org/10.1016/j.jmst.2021.08.069

    Article  CAS  Google Scholar 

  17. Du YH, Ding DY, Lai LM, Xiao SM, Guo N, Song B, Guo SF (2022) Effect of Y on the high-temperature oxidation behavior of CrMoTaTi refractory high entropy alloy. Int J Refract Met H. https://doi.org/10.1016/J.IJRMHM.2021.105755

    Article  Google Scholar 

  18. Daoud HM, Manzoni AM, Völkl R, Wanderka N, Glatzel U (2015) Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air. Adv Eng Mater 17:1134–1141. https://doi.org/10.1002/adem.201500179

    Article  CAS  Google Scholar 

  19. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  20. Senkov ON, Miller JD, Miracle DB, Woodward C (2015) Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 6:6529. https://doi.org/10.1038/ncomms7529

    Article  CAS  Google Scholar 

  21. Guo NN, Wang L, Luo LS, Li XZ, Su YQ, Guo JJ, Fu HZ (2015) Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des 81:87–94. https://doi.org/10.1016/j.matdes.2015.05.019

    Article  CAS  Google Scholar 

  22. Bao X, Maimaitijuma T, Yu B, Li X, Xi G, Liu S, Cao Y (2022) Ti-Zr-Nb based BCC solid solution alloy containing trace Cu and Ag with low modulus and excellent antibacterial properties. Mater Today Commun 31:103180. https://doi.org/10.1016/j.mtcomm.2022.103180

    Article  CAS  Google Scholar 

  23. Lu QQ, Chen XH, Tian W, Wang H, Liu P, Zhou HL, Fu SL, Gao YH, Wan MY, Wang XJ (2022) Corrosion behavior of a non-equiatomic CoCrFeNiTi high-entropy alloy: a comparison with 304 stainless steel in simulated body fluids. J Alloy Compd 897:163036. https://doi.org/10.1016/j.jallcom.2021.163036

    Article  CAS  Google Scholar 

  24. Wang SP, Xu J (2017) TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater Sci Eng C 73:80–89. https://doi.org/10.1016/j.msec.2016.12.057

    Article  CAS  Google Scholar 

  25. Li C, Ma Y, Yang X, Hou M (2021) New TiTaNbZrMo high-entropy alloys for metallic biomaterials. Mater Res Express 8:105403. https://doi.org/10.1088/20531591/ac2f0b

    Article  Google Scholar 

  26. Yuan Y, Wu Y, Yang Z, Liang X, Lei ZF, Huang HL, Wang H, Liu XJ, An K, Wu W, Lu ZP (2019) Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater Res Lett 7:225–231. https://doi.org/10.1080/21663831.2019.1584592

    Article  CAS  Google Scholar 

  27. Wei Y, Shu JP, Guan W, Ying L, Peter KL, Zhang T (2022) Ti-Zr-Hf-Nb-Ta-Sn high-entropy alloys with good properties as potential biomaterials. Rare Met 41(07):2305–2315. https://doi.org/10.1007/s12598-021-01938-3

    Article  CAS  Google Scholar 

  28. Maxim O, Nikita Y, Vitaly S, Elena N, Evgeniya P, Sergey N, Nikita S, Sergey Z (2023) Microstructure and mechanical properties of biomedical Ti-Zr-Nb-Ta-Sn high-entropy alloys. Metals 12(2):353. https://doi.org/10.3390/MET13020353

    Article  Google Scholar 

  29. Prùša F, Cabibbo M, Šenková A, Kuèera V, Veselka Z, Školáková A, Vojtech D, Cibulkova J, Capek J (2020) High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: properties and strengthening mechanism. J Alloy Compd 835:155308. https://doi.org/10.1016/j.jallcom.2020.155308

    Article  CAS  Google Scholar 

  30. Lei J, Liu MQ, Yap AUJ, Fu KY (2013) Condylar subchondral formation of cortical bone in adolescents and young adults. Brit J Oral Max Surg 51(1):63–68. https://doi.org/10.1016/J.BJOMS.2012.02.006

    Article  Google Scholar 

  31. Al-Hafidh NN, Al-Khatib AR, Al-Hafidh NN (2020) Assessment of the cortical bone thickness by CT-scan and its association with orthodontic implant position in a young adult eastern mediterranean population: a cross sectional study. Int Orthod 18:246–257. https://doi.org/10.1016/J.ORTHO.2020.02.001

    Article  Google Scholar 

  32. Iki M, Fujimori K, Nakatoh S, Tamaki J, Ishii S, Okimoto N, Kamiya K, Ogawa S (2022) Delayed initiation of anti-osteoporosis medications increases subsequent hip and vertebral fractures in patients on long-term glucocorticoid therapy: a nationwide health insurance claims database study in Japan. Bone 160:116396. https://doi.org/10.1016/J.BONE.2022.116396

    Article  CAS  Google Scholar 

  33. Mattia L, Davis S, Mark-Wagstaff C, Abrahamsen B, Peel N, Eastell R, Schini M (2022) Utility of PINP to monitor osteoporosis treatment in primary care, the POSE study (PINP and Osteoporosis in Sheffield Evaluation). Bone 158:116347. https://doi.org/10.1016/J.BONE.2022.116347

    Article  CAS  Google Scholar 

  34. Varalakshmi S, Kamaraj M, Murty BS (2018) Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloy Compd 460(1–2):253–257. https://doi.org/10.1016/j.jallcom.2007.05.104

    Article  CAS  Google Scholar 

  35. Joseph J, Hodgson P, Jarvis T, Wu XH, Stanford N, Fabijanic DM (2018) Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Mat Sci Eng A 733:59–70. https://doi.org/10.1016/j.msea.2018.07.036

    Article  CAS  Google Scholar 

  36. Saber S, Masoud A, Ahmad K (2022) Characterization and corrosion evaluation of high-entropy TixNb0.5MnMo0.5Zr03 (x = 0.5, 0.75, 1) thin films for biomedical applications. Mater Corros 74(3):430–440. https://doi.org/10.1002/maco.202213480

    Article  CAS  Google Scholar 

  37. Pan JY, Dai T, Lu T, Ni XY, Dai JW, Li M (2018) Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng A 738:362. https://doi.org/10.1016/j.msea.2018.09.089

    Article  CAS  Google Scholar 

  38. Akinwekomi A, Akhtar F (2023) Microstructural, mechanical, and electrochemical characterization of CrMoNbTiZr high-entropy alloy for biomedical application. Materials 16(15):5320. https://doi.org/10.3390/ma16155320

    Article  CAS  Google Scholar 

  39. Shan XH, Cong MQ, Lei WN (2022) Effect of cladding current on microstructure and wear resistance of high-entropy powder-cored wire coating. Metals 57(06):10–17. https://doi.org/10.3390/met12101718

    Article  CAS  Google Scholar 

  40. Ozdemir HC, Nazarahari A, Yilmaz B, Unal U, Maier HJ, Canadinc D, Bedir E, Yilmaz R (2023) Understanding the enhanced corrosion performance of two novel Ti-based biomedical high entropy alloys. J Alloy Compd 956:170343. https://doi.org/10.1016/j.jallcom.2023.170343

    Article  CAS  Google Scholar 

  41. Torrento JE, de Sousa TDP, da Cruz NC, de Almeida GS, Zambuzzi WF, Grandini CR, Correa DRN (2022) Development of non-equiatomic Bio-HEAs based on TiZrNbTa-(Mo and Mn). Apl mater 10(8):081113. https://doi.org/10.1063/5.0100465

    Article  CAS  Google Scholar 

  42. Zhou SC, Liaw PK, Xue YF, Zhang Y (2021) Temperature-dependent mechanical behavior of an Al0.5Cr0.9FeNi2.5V0.2 high-entropy alloy. Appl Phys Lett 119(12):121902. https://doi.org/10.1063/5.0064821

    Article  CAS  Google Scholar 

  43. Liu DX, Peng Q, Wu B, Yang SJ, Zhao CF, Tou CF, Chen ZH (2016) Microstructure and properties of AlCoCrFe1.5Ni high entropy alloy. Mech Eng Mater 40(10):55–59

    Article  CAS  Google Scholar 

  44. Kang M, Won JW, Lim KR, Park SH, Seo SM, Na YS (2017) Microstructure and mechanical properties of as-cast CoCrFeMnNi high entropy alloy. Korean J Met Mater 55(10):732–738. https://doi.org/10.3365/KJMM.2017.55.10.732

    Article  CAS  Google Scholar 

  45. Schopphoven T, Gasser A, Wissenbach K, Poprawe R (2016) Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying. J Laser Appl 28(2):022501. https://doi.org/10.2351/1.4943910

    Article  CAS  Google Scholar 

  46. Guo Y, Li X, Liu Q (2020) A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model. Mater Des 196:109085. https://doi.org/10.1016/j.matdes.2020.109085

    Article  CAS  Google Scholar 

  47. Jin G, Cai ZB, Guan YJ, Cui XF, Liu Z, Li Y, Dong ML, Zhang D (2018) High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl Surf Sci 445:113–122. https://doi.org/10.1016/j.apsusc.2018.03.135

    Article  CAS  Google Scholar 

  48. Meng XC, Huang YX, Liu S, Xie YM, Li JC, Zhou L (2019) Functionally gradient coating of aluminum alloy via in situ arc surface nitriding with subsequent friction stir processing. Adv Eng Mater 21(1):1800841. https://doi.org/10.1002/adem.201800841

    Article  CAS  Google Scholar 

  49. Cemin F, Artico LL, Piroli V, Yunes JA, Figueroa CA, Alvarez F (2022) Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications. Appl Surf Sci 596:153615. https://doi.org/10.1016/j.apsusc.2022.153615

    Article  CAS  Google Scholar 

  50. Alam K, Jeong G, Jang W, Cho H (2023) Enhanced mechanical properties and in vitro biocompatibility of TiMoVWCr high-entropy alloy synthesized by magnetron sputtering. Appl Surf Sci 639:158222. https://doi.org/10.1016/j.apsusc.2023.158222

    Article  CAS  Google Scholar 

  51. Wang YF, Yan H, Li J, Sun SY, Song ZJ, Shi ZQ (2019) Microstructure and corrosion resistance of FeCoCrNiCu high-entropy alloy coating prepared by electro-spark deposition. Surf Technol 48(6):144–149. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.06.016

    Article  Google Scholar 

  52. Yang LF, Ye XF, Hu CY, Yu LL, Wang WL, Wu KM (2023) Research progress on wear resistance of high entropy alloys. J Iron Steel Res 35(07):790–800. https://doi.org/10.13228/j.boyuan.issn1001-0963.2020220259

    Article  CAS  Google Scholar 

  53. Hussein AM, Mohammed SA, Al-Aqeeli N (2015) Wear characteristics of metallic biomaterials: A review. Materials 8(5). doi:https://doi.org/10.3390/ma8052749

  54. Hua NB, Wang WJ, Wang QT, Ye YX, Lin SH, Zhang L, Guo QH, Brechtl J, Liaw PK (2021) Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J Alloy Compd 861:157997. https://doi.org/10.1016/j.jallcom.2020.157997

    Article  CAS  Google Scholar 

  55. Wang WJ, Yang KH, Wang QT, Dai PQ, Fang H, Wu FJ, Guo QH, Liaw PK, Hua NB (2022) Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications. J Alloy Compd 906:164383. https://doi.org/10.1016/J.JALLCOM.2022.164383

    Article  CAS  Google Scholar 

  56. Joseph J, Haghdadi N, Annasamy M, Kada S, Hodgson PD, Barnett MR, Fabijanic DM (2020) On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scr Mater 186:230–235. https://doi.org/10.1016/j.scriptamat.2020.05.053

    Article  CAS  Google Scholar 

  57. Khruschov MM (1974) Principles of abrasive wear. Wear 28(1):69–88. https://doi.org/10.1016/0043-1648(74)90102-1

    Article  Google Scholar 

  58. Gurel S, Yagci MB, Canadinc D, Gerstein G, Bal B, Maier HJ (2020) Fracture behavior of novel biomedical Ti-based high entropy alloys under impact loading. Mat Sci Eng A 803:140456. https://doi.org/10.1016/j.msea.2020.140456

    Article  CAS  Google Scholar 

  59. Cvijovic AI, Cvijovic Z, Mitrovic S, Rakin M, Veljovic D, Babic M (2010) Tribological behaviour of orthopaedic Ti-13Nb-13Zr and Ti-6Al-4V alloys. Tribol Lett 40(1):59–70. https://doi.org/10.1007/s11249-010-9639-8

    Article  CAS  Google Scholar 

  60. Chiba A, Kumagai K, Nomura N, Miyakawa S (2007) Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co-29Cr-6Mo alloys. Acta Mater 55(4):1309–1318. https://doi.org/10.1016/j.actamat.2006.10.005

    Article  CAS  Google Scholar 

  61. Wu M, Setiawan RC, Li DY (2022) Benefits of passive element Ti to the resistance of AlCrFeCoNi high-entropy alloy to corrosion and corrosive wear. Wear 492:204. https://doi.org/10.1016/J.WEAR.2021.204231

    Article  Google Scholar 

  62. Li Z, Lai WJ, Tong X, You DQ, Li W, Wang XJ (2022) Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance. Mater Sci Eng A 845:143203. https://doi.org/10.1016/J.MSEA.2022.143203

    Article  CAS  Google Scholar 

  63. Liu XT, Lei WB, Ma LJ, Liu JL, Liu J, Cui JZ (2016) Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Metal Mat Eng. 45(9):2201–2207. https://doi.org/10.1016/S1875-5372(17)30003-6

    Article  CAS  Google Scholar 

  64. Chen MR, Lin SJ, Yeh JW, Chuang MH, Chen SK, Huang YS (2006) Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A 37(5):1363. https://doi.org/10.1007/s11661-006-0081-3

    Article  Google Scholar 

  65. Xiao JK, Tan H, Chen J, Martini A, Zhang C (2020) Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys. J Alloy Compd 847:156533. https://doi.org/10.1016/j.jallcom.2020.156533

    Article  CAS  Google Scholar 

  66. Braic V, Balaceanu M, Braic M, Vladescu A, Panseri S, Russo A (2012) Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J Mech Behav Biomed 10:197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020

    Article  CAS  Google Scholar 

  67. Huo WY, Shi HF, Ren X, Zhang JY (2015) Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding. Adv Mater Sci Eng 2015:1–5. https://doi.org/10.1155/2015/647351

    Article  Google Scholar 

  68. Cui G, Han B, Yang Y, Wang Y, Hu CY (2020) Microstructure and tribological property of CoCrFeMoNi high entropy alloy treated by ion sulfurization. J Mater Res Technol 9(2):2598. https://doi.org/10.1016/j.jmrt.2019.12.090

    Article  CAS  Google Scholar 

  69. Chen M, Lan LW, Shi XH, Yang HJ, Zhang M, Qiao JW (2019) The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the sigma phase precipitation at elevated temperature. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2018.10.393

    Article  Google Scholar 

  70. Kong D, Guo J, Liu RW, Zhang XH, Sun YP (2019) Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys. Intermetallics 114:106560. https://doi.org/10.1016/j.intermet.2019.106560

    Article  CAS  Google Scholar 

  71. Masemola K, Popoola P, Malatji N (2020) The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic high entropy alloy. J Mater Res Technol 9(3):5241. https://doi.org/10.1016/j.jmrt.2020.03.050

    Article  CAS  Google Scholar 

  72. Khodaei M, Nejatidanesh F, Shirani MJ, Iyengar S, Sina H, Valanezhad A, Savabi O (2020) Optimum temperature and chlorine ion concentration for hydrogen peroxide treatment of titanium dental implant material. J Mater Res Technol 9:13312–13319. https://doi.org/10.1016/J.JMRT.2020.09.040

    Article  CAS  Google Scholar 

  73. Frankel GS (2003) Introduction to metallurgically influenced corrosion 13A:257. https://doi.org/10.31399/asm.hb.v13a.a0003615

    Article  Google Scholar 

  74. Nascimento CB, Donatus U, Ríos CT, Antunes RA (2020) Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J Mater Res Technol 9(6):13879–13892. https://doi.org/10.1016/j.jmrt.2020.10.002

    Article  CAS  Google Scholar 

  75. Feng JY, Tang YJ, Liu J, Zhang PL, Liu CX, Wang LQ (2022) Bio-high entropy alloys: progress, challenges, and opportunities. Front Bioeng Biotech 10:977282. https://doi.org/10.3389/FBIOE.2022.977282

    Article  Google Scholar 

  76. Zhu M, Zhao B, Yuan Y, Guo S, Wei G (2021) Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment. J Electroanal Chem 882:115026. https://doi.org/10.1016/J.JELECHEM.2021.115026

    Article  CAS  Google Scholar 

  77. Hu SW, Li TJ, Su ZQ, Liu DX (2022) Research on suitable strength, elastic modulus and abrasion resistance of Ti-Zr-Nb medium entropy alloys (MEAs) for implant adaptation. Intermetallics. https://doi.org/10.1016/J.INTERMET.2021.107401

    Article  Google Scholar 

  78. Tanji A, Feng R, Lyu ZY, Sakidja R, Liaw PK, Hermawan H (2023) Passivity of AlCrFeMnTi and AlCrFeCoNi high-entropy alloys in Hanks’ solution. Corros Sci 210(1):110828. https://doi.org/10.1016/j.corsci.2022.110828

    Article  CAS  Google Scholar 

  79. Wang W, Yang K, Wang Q, Dai P, Fang H, Wu F, Hua N (2022) Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys for potential biomedical applications. J Alloy Comp 906:164383

    Article  CAS  Google Scholar 

  80. Gurel S, Nazarahari A, Canadinc D, Cabuk H, Bal B (2021) Assessment of biocompatibility of novel TiTaHf-based high entropy alloys for utility in orthopedic implants. Mater Chem Phys 266:124573. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124573

    Article  CAS  Google Scholar 

  81. Hu SW, Li X, Lin YS, Li TJ, Zhang GF, Li JJ, Zhang XS, Liu DX (2023) Systematic study of (TiZr)xNby(TaMo)z medium entropy alloys for biomedical implants. J Mater Res Technol 24:7683–7703. https://doi.org/10.1016/j.jmrt.2023.05.036

    Article  CAS  Google Scholar 

  82. Aksoy CB, Canadinc D, Yagci MB (2019) Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Mater Chem Phys 236:121802. https://doi.org/10.1016/j.matchemphys.2019.121802

    Article  CAS  Google Scholar 

  83. Gnanavel S, Ponnusamy S, Mohan L, Radhika R, Muthamizhchelvan C, Ramasubramanian K (2018) Electrochemical behavior of biomedical titanium alloys coated with diamond carbon in Hanks’s Solution. J Mater Eng Perform 27(4):1635–1641. https://doi.org/10.1007/s11665-018-3250-9

    Article  CAS  Google Scholar 

  84. Liu ZW, Liu P, Yue W, Wang AQ, Xie JP (2022) Design and fabrication of a 5Ti5Zr5Nb1Sn high-entropy alloy as metallic biomedical material. Adv Eng Mater 24(10):2200068. https://doi.org/10.1002/adem.202200068

    Article  CAS  Google Scholar 

  85. Al Hawajreh G, Gonzalez G, Romero-Resendiz L, Vidilli A, Otani LB, Amigó V (2023) Effect of the Ti/Ta ratio on the feasibility of porous Ti25+x-Nb25-Zr25-Ta25−x (x = 0, 5, and 10) alloys for biomedical applications. J Mater Res Technol 24:4364–4378. https://doi.org/10.1016/j.jmrt.2023.04.070

    Article  CAS  Google Scholar 

  86. Gurel S, Yagci M, Bal B, Canadinc D (2020) Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater Chem Phys 254:123377. https://doi.org/10.1016/j.matchemphys.2020.123377

    Article  CAS  Google Scholar 

  87. Lin SK, Lai WJ, Vogel F, Tong X, You DQ, Li W, Wang XJ (2023) Mechanical and corrosion properties of biomedical (TiZr)90−xNbxTa5Mo5 medium entropy alloys. Int J Refract Met H 116:106361. https://doi.org/10.1016/j.ijrmhm.2023.106361

    Article  CAS  Google Scholar 

  88. Glowka K, Zubko M, Swiec P, Prusik K, Szklarska M, Chrobak D, Labar JL, Stroz D (2022) Influence of molybdenum on the microstructure, mechanical properties and corrosion resistance of Ti20Ta20Nb20(ZrHf)20−xMox (Where: x = 0, 5, 10, 15, 20) high entropy alloys. Materials 15(1):393. https://doi.org/10.3390/ma15010393

    Article  CAS  Google Scholar 

  89. Ma FC, Zhang GJ, Liu P, Chen J, Liu XK, Li W (2020) Effect of various annealing temperature on microstructure and properties of metastable beta-Type Ti-35Nb-2Ta-3Zr alloy for biomedical applications. Front Mater 7:77–86. https://doi.org/10.3389/fmats.2020.00077

    Article  Google Scholar 

  90. Wang H, Liu P, Chen XH, Lu QQ, Zhou HL (2022) Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy. J Alloy Compd 906:163947. https://doi.org/10.1016/j.jallcom.2022.163947

    Article  CAS  Google Scholar 

  91. Zhang JJ, Wang HF, Yang SY, Xing XG, Shu XF, Jin XM (2018) Corrosion and wear properties of biomedical Ti-Zr-based alloys. Mater Corros 69(12):1703–1712. https://doi.org/10.1002/maco.201810278

    Article  CAS  Google Scholar 

  92. Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, Ahmed W, Dasilva LRR, Lawrence AA (2022) A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol 120:1473–1530. https://doi.org/10.1007/S00170-022-08770-8

    Article  Google Scholar 

  93. Wang S, Wu D, She H, Wu M, Shu D, Dong A, Lai H, Sun B (2020) Design of high-ductile medium entropy alloys for dental implants. Mater Sci Eng C 113:110959. https://doi.org/10.1016/j.msec.2020.110959

    Article  CAS  Google Scholar 

  94. Ishimoto T, Ozasa R, Nakano K, Weinmann M, Schnitter C, Stenzel M, Matsugaki A, Nagase T, Matsuzaka T, Todai M et al (2020) Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scripta Mater 194:113658. https://doi.org/10.1016/j.scriptamat.2020.113658

    Article  CAS  Google Scholar 

  95. Todai M, Nagase T, Hori T, Matsugaki A, Sekita A, Nakano T (2017) Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Mater 129:65–68. https://doi.org/10.1016/J.SCRIPTAMAT.2016.10.028

    Article  CAS  Google Scholar 

  96. Ke Z, Yi C, Zhang L, He Z, Tan J, Jiang Y (2019) Characterization of a new Ti-13Nb-13Zr-10Cu alloy with enhanced antibacterial activity for biomedical applications. Mater Lett 253:335–338. https://doi.org/10.1016/j.matlet.2019.07.008

    Article  CAS  Google Scholar 

  97. Chen C, Chen J, Yuan S, Li W, Wang W, Li XF, Zhang WW, Wei R, Guan SK, Wang T, Zhang T, Lei N, Fs Li (2022) Microstructure, mechanical properties, corrosion resistance and anti-bacterial behavior of novel Co-free high entropy alloys. J Alloys Compd 902:163714. https://doi.org/10.1016/J.JALLCOM.2022.163714

    Article  CAS  Google Scholar 

  98. Ren GY, Huang LL, Hu KL, Li TX, Lu YP, Qiao DX, Zhang HT, Xu DK, Wang TM, Li TJ (2022) Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. J Mater Sci Technol 117:158–166. https://doi.org/10.1016/J.JMST.2022.02.001

    Article  CAS  Google Scholar 

  99. Akmal M, Hussain A, Afzal M, Lee YI, Ryu HJ (2020) Systematic study of (MoTa)xNbTiZr medium-and high-entropy alloys for biomedical implants-in vivo biocompatibility examinations. J Mater Sci Technol 78:183–191. https://doi.org/10.1016/j.jmst.2020.10.049

    Article  CAS  Google Scholar 

  100. Song QT, Xu YK, Xu J (2020) Dry-sliding wear behavior of (TiZrNbTa)90Mo10 high entropy alloy against Al2O3. Acta metal sin 56(11):1507–1520

    CAS  Google Scholar 

  101. Tüten N, Canadinc D, Motallebzadeh A, Bal B (2019) Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti6Al4V substrates. Intermetallics 105:99–106. https://doi.org/10.1016/j.intermet.2018.11.015

    Article  CAS  Google Scholar 

  102. Wang XH, Hu TJ, Ma TF, Yang X, Zhu DD, Dong D, Xiao JJ, Yang XH (2022) Mechanical, corrosion, and wear properties of TiZrTaNbSn biomedical high-entropy alloys. Coatings 12(12):1795. https://doi.org/10.3390/coatings12121795

    Article  CAS  Google Scholar 

  103. Yang K, Wang J, Yang GY, Jia L (2023) Improved mechanical and wear properties of Ti-35Nb-5Ta-7Zr-xSi alloys fabricated by selective electron beam melting for biomedical application. J Cent South Univ 29(12):3825–3835. https://doi.org/10.1007/S11771-022-5203-6

    Article  Google Scholar 

  104. Zhang G, Khanlari K, Huang S, Li XS, Zhao DP, Wu H, Cao YK, Liu B, Huang QL (2023) Dual-structured oxide coatings with enhanced wear and corrosion resistance prepared by plasma electrolytic oxidation on Ti-Nb-Ta-Zr-Hf high-entropy alloy. Surf Coat Tech. https://doi.org/10.1016/J.SURFCOAT.2023.129254

    Article  Google Scholar 

  105. Li Z, Lai WJ, Wang BB, Tong X, You DQ, Li W, Wang XJ (2022) A novel Ti42.5Zr42.5Nb5Ta10 multi-principal element alloy with excellent properties for biomedical applications. Intermetallics 151:107731. https://doi.org/10.1016/j.intermet.2022.107731

    Article  CAS  Google Scholar 

  106. Munir K, Lin JX, Wright AFP, Ozan S, Li YC, Wen CE (2022) Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Acta Biomater 149:387–398. https://doi.org/10.1016/j.actbio.2022.07.005

    Article  CAS  Google Scholar 

  107. Xie FX, Yang H, Huang JB, Yu JH, He XM (2022) Sn content effects on microstructure, mechanical properties and tribological behavior of biomedical Ti-Nb-Sn alloys fabricated by powder metallurgy. Metals 12(2):255. https://doi.org/10.3390/met12020255

    Article  CAS  Google Scholar 

  108. Wang ZG, Huang WJ, Li Y, He HR, Zhou YT, Zheng ZQ (2017) Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer’s solution. Mater Sci Eng C 76:1094–1102. https://doi.org/10.1016/j.msec.2017.03.206

    Article  CAS  Google Scholar 

  109. Daley B, Doherty AT, Fairman B, Case CP (2004) Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br 86(4):598–606. https://doi.org/10.1302/0301-620x.86b4.14368

    Article  CAS  Google Scholar 

  110. Wood RJK (2007) Tribo-corrosion of coatings: a review. J Phys D 40(18):5502–5521. https://doi.org/10.1088/0022-3727/40/18/S10

    Article  CAS  Google Scholar 

  111. Holt G, Murnaghan C, Reilly J, Meek RMD (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252. https://doi.org/10.1097/BLO.0b013e31804b4147

    Article  CAS  Google Scholar 

  112. Wang ZG, Li Y, Huang WJ, Chen XL, He HR (2016) Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3-Mo-3Zr-2Sn alloy in simulated physiological fluid. J Mech Behav Biomed Mater 63:361–374. https://doi.org/10.1016/j.jmbbm.2016.07.010

    Article  CAS  Google Scholar 

  113. Yang X, Hutchinson CR (2016) Corrosion-wear of beta-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater 42:429–439. https://doi.org/10.1016/j.actbio.2016.07.008

    Article  CAS  Google Scholar 

  114. Shittu J, Pole M, Cockerill I, Sadeghilaridjani M, Reddy LVK, Manivasagam G, Mukherjee S (2020) Biocompatible high entropy alloys with excellent degradation resistance in a simulated physiological environment. ACS Appl Bio Mater 3(12):8890–8900. https://doi.org/10.1021/acsabm.0c01181

    Article  CAS  Google Scholar 

  115. Zhou JL, Yang JY, Zhang XF, Ma FW, Ma K, Cheng YH (2023) Research status of tribological properties optimization of high-entropy alloys: a review. J Mater Sci 58(10):4257–4291. https://doi.org/10.1007/S10853-023-08255-3

    Article  CAS  Google Scholar 

  116. Hu SW, Li TJ, Li X, Zhang GF, Li JJ, Guo FF, Liu DX (2023) Electrochemical behavior, passive film characterization and in vitro biocompatibility of Ti-Zr-Nb medium-entropy alloys. J Mater Sci 58:946–960. https://doi.org/10.1007/s10853-022-08128-1

    Article  CAS  Google Scholar 

  117. Chen SY, Tong Y, Liaw P (2018) Additive manufacturing of high-entropy alloys: a review. Entropy 20(12):937. https://doi.org/10.3390/e20120937

    Article  CAS  Google Scholar 

  118. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scripta Mater 65(1):21–24. https://doi.org/10.1016/j.scriptamat.2011.03.024

    Article  CAS  Google Scholar 

  119. Konopatsky A, Teplyakova T, Sheremetyev V, Yakimova T, Boychenko O, Kozik M, Shtansky D, Prokoshkin S (2023) Surface modification of biomedical Ti-18Zr-15Nb alloy by atomic layer deposition and Ag nanoparticles decoration. J Funct Biomater 14(5):249. https://doi.org/10.3390/jfb14050249

    Article  CAS  Google Scholar 

  120. Perumal G, Grewal HS, Pole M, Reddy LVK, Mukherjee S, Singh H, Manivasagam G, Arora HS (2020) Enhanced bio-corrosion resistance and cellular response of a dual-phase high entropy alloy through reduced elemental heterogeneity. ACS Appl Bio Mater 3:1233–1244. https://doi.org/10.1021/acsabm.9b01127

    Article  CAS  Google Scholar 

  121. Yang W, Liu Y, Pang S, Liaw PK, Zhang T (2020) Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics 124:106845. https://doi.org/10.1016/j.intermet.2020.106845

    Article  CAS  Google Scholar 

  122. Chavan A, Mandal S, Roy M (2023) Cobalt free refractory high entropy alloys for total joint arthroplasty: In-vitro wear, corrosion and cytocompatibility evaluation. J Alloy Compd 938:168499. https://doi.org/10.1016/j.jallcom.2022.168499

    Article  CAS  Google Scholar 

  123. Wang ZG, Huang WJ, Ma YL (2014) Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs. Mat Sci Eng C-Mater 42:211. https://doi.org/10.1016/j.msec.2014.05.039

    Article  CAS  Google Scholar 

  124. Fellah M, Labaïz M, Assala O, Iost A (2014) Comparative study on tribological behavior of Ti-6Al-7Nb and SS AISI 316L alloys, for total hip prosthesis. TMS. https://doi.org/10.1002/9781118889879.ch32

    Article  Google Scholar 

  125. Yang M, Huang TY, Wang D, Liu W, Liu Y, Yang HL, Yu S (2018) Effects of duty ratio on properties of micro-arc film on Ti-3Zr-2Sn-3Mo-25Nb. T I Met Finish 96(5):269–274. https://doi.org/10.1080/00202967.2018.1502506

    Article  CAS  Google Scholar 

  126. Zhang G, Huang S, Li XS, Zhao DP, Cao YK, Liu B, Huang QL (2023) Oxide ceramic coatings with amorphous/nano-crystalline dual-structures prepared by micro-arc oxidation on Ti-Nb-Zr medium entropy alloy surfaces for biomedical applications. Ceram Int 49(11):18114–18124. https://doi.org/10.1016/j.ceramint.2023.02.180

    Article  CAS  Google Scholar 

  127. Hori T, Nagase T, Todai M, Matsugaki A, Nakano T (2019) Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scr Mater 172:83–87. https://doi.org/10.1016/j.scriptamat.2019.07.011

    Article  CAS  Google Scholar 

  128. Mohammed MT, Khan ZA, Geetha M, Siddiquee AN, Mishra P (2015) Influence of thermo-mechanical processing on microstructure, mechanical properties and corrosion behavior of a new metastable β-titanium biomedical alloy. B Mater Sci 38(1):247–258. https://doi.org/10.1007/s12034-014-0832-5

    Article  CAS  Google Scholar 

  129. Motallebzadeh A, Peighambardoust NS, Sheikh S, Murakami H, Guo S, Canadinc D (2019) Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics 113:106572. https://doi.org/10.1016/j.intermet.2019.106572

    Article  CAS  Google Scholar 

  130. Alamdari AA, Unal U, Motallebzadeh A (2022) Investigation of microstructure, mechanical properties, and biocorrosion behavior of Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy film doped with Ag nanoparticles. Surfaces Interfaces 28:101617. https://doi.org/10.1016/j.surfin.2021.101617

    Article  CAS  Google Scholar 

  131. Akmal M, Hussain A, Afzal M, Lee YI, Ryu HJ (2021) Systematic study of (MoTa)xNbTiZr medium and high-entropy alloys for biomedical implants in vivo biocompatibility examination. J Mater Sci Technol 78:183–191. https://doi.org/10.1016/j.jmst.2020.10.049

    Article  CAS  Google Scholar 

  132. Li BQ, Li CL, Wang ZX, Lu X (2019) Preparation of Ti-Nb-Ta-Zr alloys for load-bearing biomedical applications. Rare Met 38(6):571–576. https://doi.org/10.1007/s12598-019-01239-w

    Article  CAS  Google Scholar 

  133. Chui PF, Jing R, Zhang FG, Li JH, Feng T (2020) Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. J Alloy Compd 842:155693–155702. https://doi.org/10.1016/j.jallcom.2020.155693

    Article  CAS  Google Scholar 

  134. Xu YF, Xiao YF, Yi DQ, Liu HQ, Wu L, Wen J (2015) Corrosion behavior of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications in Ringer’s solution. T Nonferr Metal Soc 25(8):2556–2563. https://doi.org/10.1016/S1003-6326(15)63875-4

    Article  CAS  Google Scholar 

  135. Razazzadeh A, Atapour M, Enayati MH (2021) Corrosion characteristics of TiNbMoMnFe high entropy thin film deposited on AISI316L for biomedical applications. Met Mater Int 27:2341–2352. https://doi.org/10.1007/s12540-020-00908-1

    Article  CAS  Google Scholar 

  136. Calin M, Vishnu J, Thirathipviwat P, Popa MM, Krautz M, Manivasagam G, Gebert A (2021) Tailoring biocompatible TiZrNbHfSi metallic glasses based on high-entropy alloys design approach. Mater Sci Eng C 121:111733. https://doi.org/10.1016/j.msec.2020.111733

    Article  CAS  Google Scholar 

  137. Song H, Lee S, Lee K (2020) Microstructure and electrochemical behaviors of equia tomic TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys for metallic bio materials. Arch Metall Mater 65:1317–1322. https://doi.org/10.24425/amm.2020.133692

    Article  CAS  Google Scholar 

  138. Yang W, Pang S, Liu Y, Wang Q, Liaw PK, Zhang T (2022) Design and properties of novel Ti-Zr-Hf-Nb-Ta high-entropy alloys for biomedical applications. Intermetallics 141:107421. https://doi.org/10.1016/J.INTERMET.2021.107421

    Article  CAS  Google Scholar 

  139. Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui XD, Wu YD, Gault B, Kontis P, Raabe D, Gu L, Zhang QH, Chen HW, Wang HT, Liu JB, An K, Zeng QS, Nieh TG, Lu ZP (2018) Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563:546–550. https://doi.org/10.1038/s41586-018-0685-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12162023) and the Key Talent Projects of Gansu Province and Gansu Basic Research Innovation Group Project.

Funding

The funding was provided by the National Natural Science Foundation of China, 12162023, Dexue Liu, the Key Talent Projects of Gansu Province, Gansu Basic Research Innovation Group Project.

Author information

Authors and Affiliations

Authors

Contributions

DZ took part in writing—original draft, methodology, writing—review and editing, investigation, and formal analysis. Sw H involved in writing—review and editing, investigation, and resources. YF took part in data curation. NZ involved in data curation. DL took part in supervision and visualization.

Corresponding author

Correspondence to Dexue Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Hu, S., Fu, Y. et al. A review of preparation methods, friction and wear, corrosion, and biocompatibility of biomedical high-entropy alloys. J Mater Sci 59, 1153–1183 (2024). https://doi.org/10.1007/s10853-023-09314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09314-5

Navigation