Skip to main content
Log in

Improved mechanical and wear properties of Ti−35Nb−5Ta−7Zr−xSi alloys fabricated by selective electron beam melting for biomedical application

粉床电子束增材制造生物医用Ti−35Nb−5Ta−7Zr−xSi合金的性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As the next generation biomedical titanium alloy, β-type titanium alloys are excellent candidates for biomedical applications due to the relative low elastic modulus and the contained non-toxic elements. However, the relative low strength and unsatisfactory tribological property are undesired for load-bearing implant applications. In this study, 0–5 at% Si was added to the classic Ti−35Nb−5Ta−7Zr alloy to improve its strength and wear resistance, and the (Ti−35Nb−5Ta−7Zr)1−x−Six (x=0, 1 at% and 5 at%) alloy were fabricated by selective electron beam melting (SEBM) technology. The results indicated that Si addition significantly increases in compressive yield strength, which is mainly due to grain refinement strengthening. At the same time, the wear rate of the as-built TNTZ-5Si alloy in SBF solution was only ∼30% of the Ti−6Al−4V alloy. Consequently, the TNTZ-5Si alloy showed an excellent combination of compressive yield strength, elastic modulus and wear resistance for potential load-bearing implant applications.

摘要

由不含毒性的合金元素组成的β钛合金具有低模量和优异的生物相容性,被认为是具有广泛应用前景的下一代生物医用材料。但强度和耐磨性的不足,限制了医用β 钛合金在骨科临床上的应用。 因此,本文在经典的β 钛合金Ti−35Nb−5Ta−7Zr 基础上,通过0∼5 at%的硅元素添加,同时为了迎合临床医学对骨科植入材料定制化的发展趋势,采用粉床电子束增材制造技术进行高强、耐磨医用β 钛合金的制备,并研究了硅元素的添加对合金微观组织、力学性能和摩擦磨损性能的影响规律。结果表明,硅的添加显著细化了合金的晶粒,大幅度提高了合金的强度,并且保持了相对较低的弹性模量。 5 at%Si合金表现出了最优异的强度、弹性模量和耐磨性,有望作为临床应用的下一代骨科植入材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KHAN M A, WILLIAMS R L, WILLIAMS D F. The corrosion behaviour of Ti−6Al−4V, Ti−6Al−7Nb and Ti−13Nb−13Zr in protein solutions [J]. Biomaterials, 1999, 20(7): 631–637. DOI: https://doi.org/10.1016/S0142-9612(98)00217-8.

    Article  Google Scholar 

  2. HE Bei-bei, WU Wen-heng, ZHANG Liang, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting [J]. Vacuum, 2018, 150: 79–83. DOI: https://doi.org/10.1016/j.vacuum.2018.01.026.

    Article  Google Scholar 

  3. KAUR M, SINGH K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Materials Science and Engineering C, 2019, 102: 844–862. DOI: https://doi.org/10.1016/j.msec.2019.04.064.

    Article  Google Scholar 

  4. LAING P G, FERGUSON A B, HODGE E S. Tissue reaction in rabbit muscle exposed to metallic implants [J]. Journal of Biomedical Materials Research, 1967, 1(1): 135–149. DOI: https://doi.org/10.1002/jbm.820010113.

    Article  Google Scholar 

  5. PERL D P, BRODY A R. Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons [J]. Science, 1980, 208(4441): 297–299. DOI: https://doi.org/10.1126/science.7367858.

    Article  Google Scholar 

  6. LI Jia-ning, LI Ji-shuai, QI Wen-jun, et al. Characterization and mechanical properties of thick TC4 titanium alloy sheets welded joint by vacuum EBW [J]. Vacuum, 2019, 168: 108812. DOI: https://doi.org/10.1016/j.vacuum.2019.108812.

    Article  Google Scholar 

  7. WANG Fen, YANG Chao, LUO Xuan, et al. Influence of in content on physical properties of β-type TiNbZrIn powders prepared by mechanical alloying [J]. Vacuum, 2018, 151: 175–181. DOI: https://doi.org/10.1016/j.vacuum.2018.02.020.

    Article  Google Scholar 

  8. CHEN Juan, MA Feng-cang, LIU Ping, et al. Effects of different processing conditions on super-elasticity and low modulus properties of metastable β-type Ti−35Nb−2Ta−3Zr alloy [J]. Vacuum, 2017, 146: 164–169. DOI: https://doi.org/10.1016/j.vacuum.2017.09.047.

    Article  Google Scholar 

  9. ZHOU Li-bo, CHEN Jian, HUANG Wei-ying, et al. Effects of Ta content on phase transformation in selective laser melting processed Ti−13Nb−13Zr alloy and its correlation with elastic properties [J]. Vacuum, 2021, 183: 109798. DOI: https://doi.org/10.1016/j.vacuum.2020.109798.

    Article  Google Scholar 

  10. HAO Y L, LI S J, SUN S Y, et al. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti−Nb-based alloys [J]. Materials Science and Engineering A, 2006, 441(1–2): 112–118. DOI: https://doi.org/10.1016/j.msea.2006.09.051.

    Article  Google Scholar 

  11. SING S L, YEONG W Y, WIRIA F E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties [J]. Journal of Alloys and Compounds, 2016, 660: 461–470. DOI: https://doi.org/10.1016/j.jallcom.2015.11.141.

    Article  Google Scholar 

  12. KURODA D, NIINOMI M, MORINAGA M, et al. Design and mechanical properties of new β-type titanium alloys for implant materials [J]. Materials Science and Engineering A, 1998, 243(1–2): 244–249. DOI: https://doi.org/10.1016/S0921-5093(97)00808-3.

    Article  Google Scholar 

  13. NIINOMI M. Mechanical properties of biomedical titanium alloys [J]. Materials Science and Engineering A, 1998, 243(1–2): 231–236. DOI: https://doi.org/10.1016/S0921-5093(97)00806-X.

    Article  Google Scholar 

  14. SONG Y, XU D S, YANG R, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys [J]. Materials Science and Engineering A, 1999, 260(1–2): 269–274. DOI: https://doi.org/10.1016/S0921-5093(98)00886-7.

    Article  Google Scholar 

  15. QAZI J I, RACK H J. Metastable beta titanium alloys for orthopedic applications [J]. Advanced Engineering Materials, 2005, 7(11): 993–998. DOI: https://doi.org/10.1002/adem.200500060.

    Article  Google Scholar 

  16. QAZI J I, TSAKIRIS V, MARQUARDT B, et al. Effect of aging treatments on the tensile properties of Ti−35Nb−7Zr−5Ta−(0.06–0.7)O alloys [J]. Journal of ASTM International, 2005, 2(8): 12780. DOI: https://doi.org/10.1520/jai12780.

    Article  Google Scholar 

  17. MÁLEK J, HNILICA F, VESELÝ J, et al. The effect of annealing temperature on the properties of powder metallurgy processed Ti−35Nb−2Zr−0.5O alloy [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75: 252–261. DOI: https://doi.org/10.1016/j.jmbbm.2017.07.032.

    Article  Google Scholar 

  18. MAJUMDAR P, SINGH S B, CHAKRABORTY M. The influence of heat treatment and role of boron on sliding wear behaviour of β-type Ti−35Nb−7.2Zr−5.7Ta alloy in dry condition and in simulated body fluids [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3): 284–297. DOI: https://doi.org/10.1016/j.jmbbm.2010.10.007.

    Article  Google Scholar 

  19. MAJUMDAR P. Microstructural evaluation of boron free and boron containing heat-treated Ti−35Nb−7.2Zr−5.7Ta alloy [J]. Microscopy and Microanalysis, 2012, 18(2): 295–303. DOI: https://doi.org/10.1017/s143192761101289x.

    Article  Google Scholar 

  20. MAJUMDAR P, SINGH S B, DHARA S, et al. Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β-Ti-alloys [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10: 1–12. DOI: https://doi.org/10.1016/j.jmbbm.2012.02.014.

    Article  Google Scholar 

  21. LI Y H, YANG C, WANG F, et al. Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory [J]. Materials & Design, 2015, 85: 7–13. DOI: https://doi.org/10.1016/j.matdes.2015.06.176.

    Article  Google Scholar 

  22. KOPOVA I, STRÁSKÝ J, HARCUBA P, et al. Newly developed Ti−Nb−Zr−Ta−Si−Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility [J]. Materials Science and Engineering C, 2016, 60: 230–238. DOI: https://doi.org/10.1016/j.msec.2015.11.043.

    Article  Google Scholar 

  23. SUN Yu, SONG Yang, ZUO Jian-lin, et al. Biocompatibility evaluation of novel β-type titanium alloy (Ti−35Nb−7Zr−5Ta)98Si2 in vitro [J]. RSC Advances, 2015, 5(123): 101794–101801. DOI: https://doi.org/10.1039/c5ra19767h.

    Article  Google Scholar 

  24. JIAO Y, HUANG L J, DUAN T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3ITiBw)/Ti6Al4V composites [J]. Scientific Reports, 2016, 6: 32991. DOI: https://doi.org/10.1038/srep32991.

    Article  Google Scholar 

  25. QIAN Hu, LEI Ting, LEI Peng-fei, et al. Additively manufactured tantalum implants for repairing bone defects: A systematic review [J]. Tissue Engineering Part B: Reviews, 2021, 27(2): 166–180. DOI: https://doi.org/10.1089/ten.TEB.2020.0134.

    Article  Google Scholar 

  26. WANG Fu-you, CHEN Hao, YANG Peng-fei, et al. Three-dimensional printed porous tantalum prosthesis for treating inflammation after total knee arthroplasty in one-stage surgery—A case report [J]. The Journal of International Medical Research, 2020, 48(3): 300060519891280. DOI: https://doi.org/10.1177/0300060519891280.

    Article  Google Scholar 

  27. TANG H P, YANG K, JIA L, et al. Tantalum bone implants printed by selective electron beam manufacturing (SEBM) and their clinical applications [J]. JOM, 2020, 72(3): 1016–1021. DOI: https://doi.org/10.1007/s11837-020-04016-8.

    Article  Google Scholar 

  28. YANG Kun, WANG Jian, JIA Liang, et al. Additive manufacturing of Ti−6Al−4V lattice structures with high structural integrity under large compressive deformation [J]. Journal of Materials Science & Technology, 2019, 35(2): 303–308. DOI: https://doi.org/10.1016/j.jmst.2018.10.029.

    Article  Google Scholar 

  29. FIORUCCI M P, CUADRADO A, YÁNEZ A, et al. Biomechanical characterization of custom-made dynamic implants fabricated by Electron Beam Melting for anterior chest wall reconstruction [J]. Materials & Design, 2021, 206: 109758. DOI: https://doi.org/10.1016/j.matdes.2021.109758.

    Article  Google Scholar 

  30. YANG Kun, WANG Jian, TANG Hui-ping, et al. Additive manufacturing of in situ reinforced Ti−35Nb−5Ta−7Zr (TNTZ) alloy by selective electron beam melting (SEBM) [J]. Journal of Alloys and Compounds, 2020, 826: 154178. DOI: https://doi.org/10.1016/j.jallcom.2020.154178.

    Article  Google Scholar 

  31. LUO X, YANG C, FU Z Q, et al. Achieving ultrahigh-strength in beta-type titanium alloy by controlling the melt pool mode in selective laser melting [J]. Materials Science and Engineering A, 2021, 823: 141731. DOI: https://doi.org/10.1016/j.msea.2021.141731.

    Article  Google Scholar 

  32. SALPADORU N H, FLOWER H M. Phase equilibria and transformations in a Ti-Zr-Si system [J]. Metallurgical and Materials Transactions A, 1995, 26(2): 243–257. DOI: https://doi.org/10.1007/BF02664663.

    Article  Google Scholar 

  33. WANG J, TANG H P, YANG K, et al. Selective electron beam manufacturing of Ti−6Al−4V strips: Effect of build orientation, columnar grain orientation, and hot isostatic pressing on tensile properties [J]. JOM, 2018, 70(5): 638–643. DOI: https://doi.org/10.1007/s11837-018-2794-3.

    Article  Google Scholar 

  34. RAGHAVAN N, SIMUNOVIC S, DEHOFF R, et al. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing [J]. Acta Materialia, 2017, 140: 375–387. DOI: https://doi.org/10.1016/j.actamat.2017.08.038.

    Article  Google Scholar 

  35. NGUYEN V T, QIAN M, SHI Z, et al. Compositional design of strong and ductile (tensile) Ti−Zr−Nb−Ta medium entropy alloys (MEAs) using the atomic mismatch approach [J]. Materials Science and Engineering A, 2019, 742: 762–772. DOI: https://doi.org/10.1016/j.msea.2018.11.054.

    Article  Google Scholar 

  36. LIU Jun, LIU Zhi-wei, DONG Zhi-wu, et al. On the preparation and mechanical properties of in situ small-sized TiB2/Al−4.5Cu composites via ultrasound assisted RD method [J]. Journal of Alloys and Compounds, 2018, 765: 1008–1017. DOI: https://doi.org/10.1016/j.jallcom.2018.06.303.

    Article  Google Scholar 

  37. ZHANG Du-yao, PRASAD A, BERMINGHAM M J, et al. Grain refinement of alloys in fusion-based additive manufacturing processes [J]. Metallurgical and Materials Transactions A, 2020, 51(9): 4341–4359. DOI: https://doi.org/10.1007/s11661-020-05880-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yang  (杨坤).

Additional information

Foundation item

Project(2019zdzx-04-03) supported by the Science & Technology Specific Projects of Shaanxi Province, China; Project (2021KJXX-75) supported by the Innovation Capability Support Plan of Shaanxi Province, China

Contributors

YANG Kun provided the concept and edited the draft of manuscript. WANG Jian and YANG Guang-yu analyzed the measured data. All authors edited the draft of manuscript and replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Wang, J., Yang, Gy. et al. Improved mechanical and wear properties of Ti−35Nb−5Ta−7Zr−xSi alloys fabricated by selective electron beam melting for biomedical application. J. Cent. South Univ. 29, 3825–3835 (2022). https://doi.org/10.1007/s11771-022-5203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5203-6

Key words

关键词

Navigation