Skip to main content
Log in

Heat-resistant Al alloys: microstructural design and microalloying effect

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lightweight strategy is essential for the development of transportation vehicles and aerospace industries. As a type of lightweight material, high-strength aluminum alloys are limited to service temperatures below 200 °C due to the rapid coarsening of strengthening nano-precipitates, which cannot satisfy the increasing demands of practical applications. High-temperature applications beyond 250 °C become the bottle-neck problem of Al alloys. In this paper, we review existing literature on the improvement of high-temperature performance of aluminum alloys by stabilizing nano-precipitates. On the basis of atomic-scale microstructure regulation, several design strategies, such as interface segregation, co-precipitation, core/shell structure, and interstitial ordering, have been proposed, resulting in the development of a number of heat-resistant Al alloys for use at 300–400 °C. Moreover, the fundamental theories of solid-state phase transformation, especially precipitation aging and coarsening, are correspondingly advanced on the frontiers of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

All data can be made available to interest readers upon request.

References

  1. Zhu L, Li N, Childs PRN (2018) Light-weighting in aerospace component and system design. Propul Power Res 7:103–119. https://doi.org/10.1016/j.jppr.2018.04.001

    Article  Google Scholar 

  2. Gayle FW, Goodway M (1994) Precipitation hardening in the first aerospace aluminum alloy: the Wright Flyer crankcase. Science 266:1015–1017. https://doi.org/10.1126/science.266.5187.1015

    Article  CAS  Google Scholar 

  3. Wadsworth J, Nieh TG, Stephens JJ (1988) Recent advances in aerospace refractory metal alloys. Int Mater Rev 33:131–150. https://doi.org/10.1179/imr.1988.33.1.131

    Article  CAS  Google Scholar 

  4. Liu G, Zhang GJ, Ding XD et al (2003) Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater Sci Eng, A 344:113–124. https://doi.org/10.1016/S0921-5093(02)00398-2

    Article  Google Scholar 

  5. Hornbogen E (2001) Hundred years of precipitation hardening. J Light Met 1:127–132. https://doi.org/10.1016/S1471-5317(01)00006-2

    Article  Google Scholar 

  6. Ardell AJ (1985) Precipitation hardening. Metall Mater Trans A 16:2131–2165. https://doi.org/10.1007/BF02670416

    Article  Google Scholar 

  7. Kelly PM (1972) The effect of particle shape on dispersion hardening. Scr Metall 6:647–656. https://doi.org/10.1016/0036-9748(72)90120-2

    Article  CAS  Google Scholar 

  8. Polmear IJ, Couper MJ (1988) Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metall Mater Trans A 19:1027–1035. https://doi.org/10.1007/BF02628387

    Article  Google Scholar 

  9. Bahl S, Xiong L, Allard LF et al (2021) Aging behavior and strengthening mechanisms of coarsening resistant metastable θ’ precipitates in an Al–Cu alloy. Mater Des 198:109378–109389. https://doi.org/10.1016/j.matdes.2020.109378

    Article  CAS  Google Scholar 

  10. Zong BY, Derby B (1997) Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite. Acta Mater 45:41–49. https://doi.org/10.1016/S1359-6454(96)00171-1

    Article  CAS  Google Scholar 

  11. Wakashima K, Moriyama T, Mori T (2000) Steady-state creep of a particulate SiC/6061 Al composite. Acta Mater 48:891–901. https://doi.org/10.1016/S1359-6454(99)00386-9

    Article  CAS  Google Scholar 

  12. Kawabata K, Sato E, Kuribayashi K (2002) Creep deformation behavior of spherical Al2O3 particle-reinforced Al–Mg matrix composites at high temperatures. Acta Mater 50:3465–3474. https://doi.org/10.1016/S1359-6454(02)00160-X

    Article  CAS  Google Scholar 

  13. Liu HQ, Pang JC, Wang M et al (2021) Effect of temperature on the mechanical properties of Al–Si–Cu–Mg–Ni–Ce alloy. Mater Sci Eng, A 824:141762–141771. https://doi.org/10.1016/j.msea.2021.141762

    Article  CAS  Google Scholar 

  14. Khatri SC, Lawley A, Koczak MJ, Grassett KG (1993) Creep and microstructural stability of dispersion strengthened Al-Fe-V-Si-Er alloy. Mater Sci Eng, A 167:11–21. https://doi.org/10.1016/0921-5093(93)90331-8

    Article  Google Scholar 

  15. Sims ZC, Rios OR, Weiss D et al (2017) High performance aluminum–cerium alloys for high-temperature applications. Mater Horiz 4:1070–1078. https://doi.org/10.1039/C7MH00391A

    Article  CAS  Google Scholar 

  16. Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C (2018) New generation of eutectic Al-Ni casting alloys for elevated temperature services. Mater Sci Eng, A 709:46–54. https://doi.org/10.1016/j.msea.2017.10.034

    Article  CAS  Google Scholar 

  17. Porter DA, Easterling KE, Sherif MY (2021) Phase transformations in metals and alloys, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Balducci E, Ceschini L, Messieri S et al (2017) Thermal stability of the lightweight 2099 Al-Cu-Li alloy: tensile tests and microstructural investigations after overaging. Mater Des 119:54–64. https://doi.org/10.1016/j.matdes.2017.01.058

    Article  CAS  Google Scholar 

  19. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Ostwald ripening in concentrated alloys. Acta Metall Mater 42:991–1000. https://doi.org/10.1016/0956-7151(94)90293-3

    Article  CAS  Google Scholar 

  20. Boyd JD, Nicholson RB (1971) The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metall 19:1379–1391. https://doi.org/10.1016/0001-6160(71)90076-9

    Article  CAS  Google Scholar 

  21. Noble B (1968) Theta-prime precipitation in aluminium-copper-cadmium alloys. Acta Metall 16:393–401. https://doi.org/10.1016/0001-6160(68)90026-6

    Article  CAS  Google Scholar 

  22. Murray JL (1985) The aluminium-copper system. Int Metals Rev 30:211–234. https://doi.org/10.1179/imtr.1985.30.1.211

    Article  CAS  Google Scholar 

  23. Vaithyanathan V, Wolverton C, Chen LQ (2004) Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater 52:2973–2987. https://doi.org/10.1016/j.actamat.2004.03.001

    Article  CAS  Google Scholar 

  24. Liu H, Papadimitriou I, Lin FX, LLorca J (2019) Precipitation during high temperature aging of Al−Cu alloys: a multiscale analysis based on first principles calculations. Acta Materialia 167:121–135. https://doi.org/10.1016/j.actamat.2019.01.024

    Article  CAS  Google Scholar 

  25. Liu H, Bellón B, LLorca J (2017) Multiscale modelling of the morphology and spatial distribution of θ′ precipitates in Al-Cu alloys. Acta Mater 132:611–626. https://doi.org/10.1016/j.actamat.2017.04.042

    Article  CAS  Google Scholar 

  26. Kim K, Roy A, Gururajan MP et al (2017) First-principles/Phase-field modeling of θ′ precipitation in Al-Cu alloys. Acta Mater 140:344–354. https://doi.org/10.1016/j.actamat.2017.08.046

    Article  CAS  Google Scholar 

  27. Seidman DN, Marquis EA, Dunand DC (2002) Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater 50:4021–4035. https://doi.org/10.1016/S1359-6454(02)00201-X

    Article  CAS  Google Scholar 

  28. Marquis EA, Seidman DN, Dunand DC (2003) Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Mater 51:4751–4760

    Article  CAS  Google Scholar 

  29. Knipling KE, Dunand DC, Seidman DN (2006) Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Zeitschrift fuer Metallkunde/Mater Res Adv Tech 97:246–265. https://doi.org/10.3139/146.101249

    Article  CAS  Google Scholar 

  30. Xue H, Yang C, De Geuser F et al (2023) Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat Mater 22:434–441. https://doi.org/10.1038/s41563-022-01420-0

    Article  CAS  Google Scholar 

  31. Shyam A, Bahl S (2023) Heat-resistant aluminium alloys. Nat Mater 22:425–426. https://doi.org/10.1038/s41563-022-01436-6

    Article  CAS  Google Scholar 

  32. Won S-J, So H, Kang L et al (2021) Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms. Scripta Mater 205:114216. https://doi.org/10.1016/j.scriptamat.2021.114216

    Article  CAS  Google Scholar 

  33. Ma K, Hu T, Yang H et al (2016) Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater 103:153–164. https://doi.org/10.1016/j.actamat.2015.09.017

    Article  CAS  Google Scholar 

  34. Yang C, Zhang P, Shao D et al (2016) The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater 119:68–79. https://doi.org/10.1016/j.actamat.2016.08.013

    Article  CAS  Google Scholar 

  35. Gao YH, Kuang J, Zhang JY et al (2020) Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al–Cu–Sc alloy by isochronal aging. Mater Sci Eng, A 795:139943–139955. https://doi.org/10.1016/j.msea.2020.139943

    Article  CAS  Google Scholar 

  36. van Dalen ME, Seidman DN, Dunand DC (2008) Creep- and coarsening properties of Al–0.06at.% Sc–0.06at.% Ti at 300–450°C. Acta Mater 56:4369–4377. https://doi.org/10.1016/j.actamat.2008.05.002

    Article  CAS  Google Scholar 

  37. Røyset J, Ryum N (2005) Scandium in aluminium alloys. Int Mater Rev 50:19–44. https://doi.org/10.1179/174328005X14311

    Article  CAS  Google Scholar 

  38. Dorin T, Babaniaris S, Jiang L et al (2021) Stability and stoichiometry of L12 Al3(Sc, Zr) dispersoids in Al-(Si)-Sc-Zr alloys. Acta Mater 216:117117. https://doi.org/10.1016/j.actamat.2021.117117

    Article  CAS  Google Scholar 

  39. Kim K, Zhou B-C, Wolverton C (2018) First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys. Acta Mater 145:337–346. https://doi.org/10.1016/j.actamat.2017.12.013

    Article  CAS  Google Scholar 

  40. Wang D, Amsler M, Hegde VI et al (2018) Crystal structure, energetics, and phase stability of strengthening precipitates in Mg alloys: a first-principles study. Acta Mater 158:65–78. https://doi.org/10.1016/j.actamat.2018.07.041

    Article  CAS  Google Scholar 

  41. Xue H, Yang C, Kuang J et al (2021) Highly interdependent dual precipitation and its effect on mechanical properties of Al–Cu-Sc alloys. Mater Sci Eng, A 820:141526–141535. https://doi.org/10.1016/j.msea.2021.141526

    Article  CAS  Google Scholar 

  42. Zhao H, Chen Y, Gault B et al (2020) (Al, Zn)3Zr dispersoids assisted η′ precipitation in anAl-Zn-Mg-Cu-Zr alloy. Materialia 10:100641–100646. https://doi.org/10.1016/j.mtla.2020.100641

    Article  CAS  Google Scholar 

  43. Ye X-J, Liu C-S, Zhong W, Du Y-W (2015) Precipitate size dependence of Ni/Ni3Al interface energy. Phys Lett A 379:37–40. https://doi.org/10.1016/j.physleta.2014.10.027

    Article  CAS  Google Scholar 

  44. Kim K, Zhou B-C, Wolverton C (2019) Interfacial stability of θ′/Al in Al-Cu alloys. Scripta Mater 159:99–103. https://doi.org/10.1016/j.scriptamat.2018.09.018

    Article  CAS  Google Scholar 

  45. Wang S, Zhang C, Li X et al (2020) First-principle investigation on the interfacial structure evolution of the δ’/θ’/δ’ composite precipitates in Al-Cu-Li alloys. J Mater Sci Technol 58:205–214. https://doi.org/10.1016/j.jmst.2020.03.065

    Article  CAS  Google Scholar 

  46. Na B, Zhou B-C, Wolverton C, Kim K (2021) First-principles calculations of bulk and interfacial thermodynamic properties of the T1 phase in Al-Cu-Li alloys. Scr Mater 202:114009–114013. https://doi.org/10.1016/j.scriptamat.2021.114009

    Article  CAS  Google Scholar 

  47. Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960. https://doi.org/10.1126/science.1229369

    Article  CAS  Google Scholar 

  48. Chen BA, Liu G, Wang RH et al (2013) Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater 61:1676–1690. https://doi.org/10.1016/j.actamat.2012.11.043

    Article  CAS  Google Scholar 

  49. Peng J, Bahl S, Shyam A et al (2020) Solute-vacancy clustering in aluminum. Acta Mater 196:747–758. https://doi.org/10.1016/j.actamat.2020.06.062

    Article  CAS  Google Scholar 

  50. Gao YH, Cao LF, Kuang J et al (2020) Dual effect of Cu on the Al3Sc nanoprecipitate coarsening. J Mater Sci Technol 37:38–45. https://doi.org/10.1016/j.jmst.2019.07.035

    Article  CAS  Google Scholar 

  51. Yang C, Cheng P, Chen B et al (2022) Solute clusters-promoted strength-ductility synergy in Al-Sc alloy. J Mater Sci Technol 96:325–331. https://doi.org/10.1016/j.jmst.2021.02.075

    Article  CAS  Google Scholar 

  52. Gao YH, Yang C, Zhang JY et al (2019) Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C. Mater Res Lett 7:18–25. https://doi.org/10.1080/21663831.2018.1546773

    Article  CAS  Google Scholar 

  53. Dregia SA, Wynblatt P (1991) Equilibrium segregation and interfacial energy in multicomponent systems. Acta Metall Mater 39:771–778. https://doi.org/10.1016/0956-7151(91)90277-8

    Article  CAS  Google Scholar 

  54. Merle P, Merlin J (1981) Coarsening of θ′ plates in Al-Cu alloys—II. influence of ledge mechanism. Acta Metall 29:1929–1938. https://doi.org/10.1016/0001-6160(81)90030-4

    Article  CAS  Google Scholar 

  55. Howe JM, Dahmen U, Gronsky R (1987) Atomic mechanisms of precipitate plate growth. Philos Mag A 56:31–61. https://doi.org/10.1080/01418618708204465

    Article  CAS  Google Scholar 

  56. Biswas A, Siegel DJ, Wolverton C, Seidman DN (2011) Precipitates in Al–Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59:6187–6204. https://doi.org/10.1016/j.actamat.2011.06.036

    Article  CAS  Google Scholar 

  57. Bansal U, Singh MP, Mondol S et al (2022) The interplay of precipitation of ordered compounds and interfacial segregation in Al-Cu-Hf-Si alloys for high-temperature strength. Acta Mater 240:118355–118372. https://doi.org/10.1016/j.actamat.2022.118355

    Article  CAS  Google Scholar 

  58. Rosalie JM, Bourgeois L (2012) Silver segregation to θ′ (Al2Cu)–Al interfaces in Al–Cu–Ag alloys. Acta Mater 60:6033–6041. https://doi.org/10.1016/j.actamat.2012.07.039

    Article  CAS  Google Scholar 

  59. Zheng Y, Liu Y, Wilson N et al (2020) Solute segregation induced sandwich structure in Al-Cu(-Au) alloys. Acta Mater 184:17–29. https://doi.org/10.1016/j.actamat.2019.11.011

    Article  CAS  Google Scholar 

  60. Bourgeois L, Dwyer C, Weyland M et al (2012) The magic thicknesses of θ′ precipitates in Sn-microalloyed Al–Cu. Acta Mater 60:633–644. https://doi.org/10.1016/j.actamat.2011.10.015

    Article  CAS  Google Scholar 

  61. Nie JF, Muddle BC (2008) Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater 56:3490–3501. https://doi.org/10.1016/j.actamat.2008.03.028

    Article  CAS  Google Scholar 

  62. Shin D, Shyam A, Lee S et al (2017) Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys. Acta Mater 141:327–340. https://doi.org/10.1016/j.actamat.2017.09.020

    Article  CAS  Google Scholar 

  63. Hutchinson CR, Fan X, Pennycook SJ, Shiflet GJ (2001) On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys. Acta Mater 49:2827–2841. https://doi.org/10.1016/S1359-6454(01)00155-0

    Article  CAS  Google Scholar 

  64. Kang SJ, Kim Y-W, Kim M, Zuo J-M (2014) Determination of interfacial atomic structure, misfits and energetics of Ω phase in Al–Cu–Mg–Ag alloy. Acta Mater 81:501–511. https://doi.org/10.1016/j.actamat.2014.07.074

    Article  CAS  Google Scholar 

  65. Gazizov M, Kaibyshev R (2017) Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy. Mater Sci Eng, A 702:29–40. https://doi.org/10.1016/j.msea.2017.06.110

    Article  CAS  Google Scholar 

  66. Petrik MV, Gornostyrev YuN, Korzhavyi PA (2021) Segregation of alloying elements to stabilize θ′ phase interfaces in Al-Cu based alloys. Scripta Mater 202:114006–114009. https://doi.org/10.1016/j.scriptamat.2021.114006

    Article  CAS  Google Scholar 

  67. Shyam A, Roy S, Shin D et al (2019) Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Mater Sci Eng, A 765:138279–138289. https://doi.org/10.1016/j.msea.2019.138279

    Article  CAS  Google Scholar 

  68. Gao YH, Guan PF, Su R et al (2020) Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance. Mater Res Lett 8:446–453. https://doi.org/10.1080/21663831.2020.1799447

    Article  CAS  Google Scholar 

  69. Michi RA, Plotkowski A, Shyam A et al (2022) Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. Int Mater Rev 67:298–345. https://doi.org/10.1080/09506608.2021.1951580

    Article  CAS  Google Scholar 

  70. Jiang L, Rouxel B, Langan T, Dorin T (2021) Coupled segregation mechanisms of Sc, Zr and Mn at θ ′ interfaces enhances the strength and thermal stability of Al-Cu alloys. Acta Mater 206:116634–116646. https://doi.org/10.1016/j.actamat.2021.116634

    Article  CAS  Google Scholar 

  71. Bansal U, Singh MP, Sinha SK et al (2023) Strength and stability through variable micro segregation behaviour of Ta and Zr solutes at intermetallic interfaces in Al-Cu alloys. Acta Mater 259:119254–119273. https://doi.org/10.1016/j.actamat.2023.119254

    Article  CAS  Google Scholar 

  72. Ghosh G, Vaynman S, Asta M, Fine ME (2007) Stability and elastic properties of L12-(Al, Cu)3(Ti, Zr) phases: ab initio calculations and experiments. Intermetallics 15:44–54. https://doi.org/10.1016/j.intermet.2006.03.003

    Article  CAS  Google Scholar 

  73. Pan R-K, Wang H-C, Shi T-T et al (2016) Thermal properties and thermoelasticity of L12 ordered Al3RE (RE=Er, Tm, Yb, Lu) phases: a first-principles study. Mater Des 102:100–105. https://doi.org/10.1016/j.matdes.2016.03.165

    Article  CAS  Google Scholar 

  74. Gao YH, Cao LF, Kuang J et al (2020) Si-mediated reassembly of interfacially segregated Sc atoms in an Al–Cu–Sc alloy exposed to high-temperature creep. J Alloy Compd 845:156266–156273. https://doi.org/10.1016/j.jallcom.2020.156266

    Article  CAS  Google Scholar 

  75. Poplawsky JD, Milligan BK, Allard LF et al (2020) The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater 194:577–586. https://doi.org/10.1016/j.actamat.2020.05.043

    Article  CAS  Google Scholar 

  76. Philippe T, Voorhees PW (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61:4237–4244. https://doi.org/10.1016/j.actamat.2013.03.049

    Article  CAS  Google Scholar 

  77. Shewmon PG (1989) Diffusion in solids. Minerals, Metals & Materials Society, Warrendale

    Google Scholar 

  78. Wang SC, Starink MJ (2007) Two types of S phase precipitates in Al–Cu–Mg alloys. Acta Mater 55:933–941. https://doi.org/10.1016/j.actamat.2006.09.015

    Article  CAS  Google Scholar 

  79. Starink MJ, Wang SC (2003) A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater 51:5131–5150. https://doi.org/10.1016/S1359-6454(03)00363-X

    Article  CAS  Google Scholar 

  80. Xiao H, Wang Z, Geng J et al (2022) Precipitation and crystallographic relationships of nanosized η/η’ precipitates at S-Al interface in Al-Zn-Mg-Cu alloy. Scripta Mater 214:114643. https://doi.org/10.1016/j.scriptamat.2022.114643

    Article  CAS  Google Scholar 

  81. Wang Y, Sharma B, Xu Y et al (2022) Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nat Commun 13:6860–6867. https://doi.org/10.1038/s41467-022-34628-4

    Article  CAS  Google Scholar 

  82. Gazizov MR, Belyakov AN, Holmestad R et al (2023) The coarsening behavior of strengthening particles in an Al–Cu–Mg–Ag alloy during creep. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2023.145515

    Article  CAS  Google Scholar 

  83. Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919. https://doi.org/10.1016/S1359-6454(01)00116-1

    Article  CAS  Google Scholar 

  84. Zhou S, Zhang Z, Li M et al (2016) Effect of Sc on microstructure and mechanical properties of as-cast Al–Mg alloys. Mater Des 90:1077–1084. https://doi.org/10.1016/j.matdes.2015.10.132

    Article  CAS  Google Scholar 

  85. Wu SH, Xue H, Yang C et al (2021) Effect of Si addition on the precipitation and mechanical/electrical properties of dilute Al–Zr-Sc alloys. Mater Sci Eng, A 812:141150–141160. https://doi.org/10.1016/j.msea.2021.141150

    Article  CAS  Google Scholar 

  86. Liu J, Yao P, Zhao N et al (2016) Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys. J Alloy Compd 657:717–725. https://doi.org/10.1016/j.jallcom.2015.10.122

    Article  CAS  Google Scholar 

  87. Jones MJ, Humphreys FJ (2003) Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater 51:2149–2159. https://doi.org/10.1016/S1359-6454(03)00002-8

    Article  CAS  Google Scholar 

  88. Yin Z, Pan Q, Zhang Y, Jiang F (2000) Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater Sci Eng, A 280:151–155. https://doi.org/10.1016/S0921-5093(99)00682-6

    Article  Google Scholar 

  89. Karnesky RA, van Dalen ME, Dunand DC, Seidman DN (2006) Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08at. %Sc alloy. Scripta Mater 55:437–440. https://doi.org/10.1016/j.scriptamat.2006.05.021

    Article  CAS  Google Scholar 

  90. Beeri O, Dunand DC, Seidman DN (2010) Roles of impurities on precipitation kinetics of dilute Al–Sc alloys. Mater Sci Eng, A 527:3501–3509. https://doi.org/10.1016/j.msea.2010.02.027

    Article  CAS  Google Scholar 

  91. Knipling KE, Karnesky RA, Lee CP et al (2010) Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater 58:5184–5195. https://doi.org/10.1016/j.actamat.2010.05.054

    Article  CAS  Google Scholar 

  92. Knipling KE, Seidman DN, Dunand DC (2011) Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Acta Mater 59:943–954. https://doi.org/10.1016/j.actamat.2010.10.017

    Article  CAS  Google Scholar 

  93. van Dalen ME, Gyger T, Dunand DC, Seidman DN (2011) Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys. Acta Mater 59:7615–7626. https://doi.org/10.1016/j.actamat.2011.09.019

    Article  CAS  Google Scholar 

  94. Fuller CB, Murray JL, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part I - chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater 53:5401–5413. https://doi.org/10.1016/j.actamat.2005.08.016

    Article  CAS  Google Scholar 

  95. Fuller CB, Seidman DN (2005) Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: part II-coarsening of Al3(Sc1−xZrx) precipitates. Acta Mater 53:5415–5428. https://doi.org/10.1016/j.actamat.2005.08.015

    Article  CAS  Google Scholar 

  96. Booth-Morrison C, Mao Z, Diaz M et al (2012) Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater 60:4740–4752. https://doi.org/10.1016/j.actamat.2012.05.036

    Article  CAS  Google Scholar 

  97. Vo NQ, Seidman DN, Dunand DC (2018) Effect of Si micro-addition on creep resistance of a dilute Al-Sc-Zr-Er alloy. Mater Sci Eng, A 734:27–33. https://doi.org/10.1016/j.msea.2018.07.053

    Article  CAS  Google Scholar 

  98. Vo NQ, Dunand DC, Seidman DN (2016) Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys. Mater Sci Eng, A 677:485–495. https://doi.org/10.1016/j.msea.2016.09.065

    Article  CAS  Google Scholar 

  99. Booth-Morrison C, Seidman DN, Dunand DC (2012) Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater 60:3643–3654. https://doi.org/10.1016/j.actamat.2012.02.030

    Article  CAS  Google Scholar 

  100. Booth-Morrison C, Dunand DC, Seidman DN (2011) Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys.pdf. Acta Mater 59:7029–7042. https://doi.org/10.1016/j.actamat.2011.07.057

    Article  CAS  Google Scholar 

  101. De Luca A, Dunand DC, Seidman DN (2016) Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio. Acta Mater 119:35–42. https://doi.org/10.1016/j.actamat.2016.08.018

    Article  CAS  Google Scholar 

  102. Erdeniz D, Nasim W, Malik J et al (2017) Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys. Acta Mater 124:501–512. https://doi.org/10.1016/j.actamat.2016.11.033

    Article  CAS  Google Scholar 

  103. De Luca A, Dunand DC, Seidman DN (2018) Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content. Acta Mater 144:80–91. https://doi.org/10.1016/j.actamat.2017.10.040

    Article  CAS  Google Scholar 

  104. Jung J-G, Farkoosh AR, Seidman DN (2023) Microstructural and mechanical properties of precipitation-strengthened Al-Mg-Zr-Sc-Er-Y-Si alloys. Acta Mater 257:119167. https://doi.org/10.1016/j.actamat.2023.119167

    Article  CAS  Google Scholar 

  105. Vo NQ, Dunand DC, Seidman DN (2014) Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater 63:73–85. https://doi.org/10.1016/j.actamat.2013.10.008

    Article  CAS  Google Scholar 

  106. Clouet E, Laé L, Épicier T et al (2006) Complex precipitation pathways in multicomponent alloys. Nat Mater 5:482–488. https://doi.org/10.1038/nmat1652

    Article  CAS  Google Scholar 

  107. Orthacker A, Haberfehlner G, Taendl J et al (2018) Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates. Nat Mater 17:1101–1107. https://doi.org/10.1038/s41563-018-0209-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51790482, 52071253, 52001249 and 52271115) and the 111 Project of China (BP0618008).

Author information

Authors and Affiliations

Authors

Contributions

CY, GL and JS initiated and supervised the project. HX and CY wrote the paper. All authors extensively discussed the data.

Corresponding authors

Correspondence to C. Yang or G. Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for the research presented.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Yang, C., Zhang, P. et al. Heat-resistant Al alloys: microstructural design and microalloying effect. J Mater Sci (2024). https://doi.org/10.1007/s10853-023-09295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-023-09295-5

Navigation