Skip to main content
Log in

Recent trends in coating processes on various AISI steel substrates: A review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various spraying techniques have been used to apply engineered coatings on different industrial parts and components. Enhancing the properties of coated components for particular uses requires a surface treatment of thermally assisted as-sprayed coatings. In this study, we provide a study of various coating techniques and a thorough overview of the complexes in different AISI steels' corrosion, erosion, and wear behaviour. In-depth analysis and discussion are provided on the impact of processing techniques, microstructure, and alloying components on the behaviour of surface deterioration. We emphasize the underlying processes and synergy between the various degradation paths and point out significant information gaps in individual publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

HVOF:

High-velocity oxy-fuel

PVD:

Physical vapour deposition

D-GUN:

Detonation gun process

HVAF:

High-velocity air–fuel

LPPS:

Low-pressure plasma spray process

TIG:

Tungsten inert gas

SEM:

Scanning electron microscope

IBAD:

Ion-beam-assisted deposition

EDX:

Energy-dispersive X-ray analysis

CVD:

Chemical vapour deposition

XRD:

X-ray diffraction analysis

OM:

Optical microscopy

AFM:

Atomic force microscopy

STM:

Scanning tunnelling microscopy

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

UV-VI:

Ultraviolet visual inspection

PC:

Polarization curves

LPR:

Linear polarization resistance

OCPD:

Open-circuit potential decay

ACIM:

AC impedance measurement

WLM:

Weight loss measurement

OPC:

Open-circuit potential

References

  1. Kumar N, Choubey VK (2023) Comparative evaluation of oxidation resistance of detonation gun-sprayed Al2O3–40%TiO2 coating on nickel-based superalloys at 800 °C and 900 °C. High Temp Corros Mater 99:359–373. https://doi.org/10.1007/s11085-023-10157-3

    Article  CAS  Google Scholar 

  2. Mohan, S., & Mohan, A. (2015). Wear, friction and prevention of tribo-surfaces by coatings/nanocoatings. In Anti-Abrasive Nanocoatings (pp. 3–22). Woodhead Publishing.

  3. Qu J, Blau PJ, Jolly BC (2007) Tribological properties of stainless steels treated by colossal carbon supersaturation. Wear 263(2007):719–726. https://doi.org/10.1016/j.wear.2006.12.049

    Article  CAS  Google Scholar 

  4. Lavvafi H, Lewandowski ME, Schwam D, Lewandowski JJ (2017) Effects of surface laser treatments on microstructure, tension, and fatigue behavior of AISI 316LVM biomedical wires. Mater Sci Eng, A 688:101–113

    Article  CAS  Google Scholar 

  5. Sanjari M, Hadadzadeh A, Pirgazi H, Shahriari A, Shalchi Amirkhiz B, Kestens LA, Mohammadi M (2020) Selective laser melted stainless steel CX: role of built orientation on microstructure and micro-mechanical properties. Mater Sci Eng A 786:139365. https://doi.org/10.1016/j.msea.2020.139365

    Article  CAS  Google Scholar 

  6. Liang D, Hure J, Courcelle A, ElShawish S, Tanguy B (2021) A micromechanical analysis of intergranular stress corrosion cracking of an irradiated austenitic stainless steel. Acta Mater 204:116482. https://doi.org/10.1016/j.actamat.2020.116482

    Article  CAS  Google Scholar 

  7. Paccou E, Tanguy B, Legros M (2020) Irradiation-assisted stress corrosion cracking susceptibility and mechanical properties related to irradiation-induced microstructures of 304L austenitic stainless steel. J Nucl Mater 528:151880. https://doi.org/10.1016/j.jnucmat.2019.151880

    Article  CAS  Google Scholar 

  8. Kim HJ, Hwang SY, Lee CH, Juvanon P (2003) Assessment of wear performance of flame sprayed and fused Ni-based coatings. Surf Coat Technol 172(2–3):262–269

    Article  CAS  Google Scholar 

  9. Elsheikh AH, Yu J, Sathyamurthy R, Tawfik MM, Shanmugan S, Essa FA (2020) Improving the tribological properties of AISI M50 steel using Sns/Zno solid lubricants. J Alloy Compd 821:153494

    Article  CAS  Google Scholar 

  10. Ibrahim AMM, Omer MA, Das SR, Li W, Alsoufi MS, Elsheikh A (2022) Evaluating the effect of minimum quantity lubrication during hard turning of AISI D3 steel using vegetable oil enriched with nano-additives. Alex Eng J 61(12):10925–10938

    Article  Google Scholar 

  11. Essa FA, Elsheikh AH, Yu J, Elkady OA, Saleh B (2021) Studies on the effect of applied load, sliding speed and temperature on the wear behavior of M50 steel reinforced with Al2O3 and/or graphene nanoparticles. J Market Res 12:283–303

    CAS  Google Scholar 

  12. Das A, Padhan S, Das SR, Alsoufi MS, Ibrahim AMM, Elsheikh A (2021) Performance assessment and chip morphology evaluation of austenitic stainless steel under sustainable machining conditions. Metals 11(12):1931

    Article  CAS  Google Scholar 

  13. Padhan S, Das SR, Das A, Alsoufi MS, Ibrahim AMM, Elsheikh A (2022) Machinability investigation of Nitronic 60 steel turning using SiAlON ceramic tools under different cooling/lubrication conditions. Materials 15(7):2368

    Article  CAS  Google Scholar 

  14. Wagri NK, Jain NK, Petare A, Das SR, Tharwan MY, Alansari A, Elsheikh A (2023) Investigation on the performance of coated carbide tool during dry turning of AISI 4340 alloy steel. Materials 16(2):668

    Article  CAS  Google Scholar 

  15. Essa FA, Yu J, Elsheikh AH, Tawfik MM (2019) A new M50 matrix composite sintered with a hybrid Sns/Zno nanoscale solid lubricants: an experimental investigation. Mater Res Express 6(11):116523

    Article  CAS  Google Scholar 

  16. Chaturvedi M, Subbiah AV, Tharwan MY, Al Sofyani S, Kachinskiy V, Radder S, Elsheikh AH (2022) Welding of low carbon steel tubes using magnetically impelled arc butt welding: Experimental investigation and characterization. Metals 12(11):1965

    Article  CAS  Google Scholar 

  17. Ahmadein M, El-Kady OA, Mohammed MM, Essa FA, Alsaleh NA, Djuansjah J, Elsheikh AH (2021) Improving the mechanical properties and coefficient of thermal expansion of molybdenum-reinforced copper using powder metallurgy. Mater Res Express 8(9):096502

    Article  CAS  Google Scholar 

  18. Mohammed MM, Alrasheedi NH, El-Kady OA, Djuansjah J, Essa FA, Elsheikh AH (2023) Impact of using tungsten, cobalt, and aluminum additives on the tribological and mechanical properties of iron composites. Crystals 13(3):395

    Article  CAS  Google Scholar 

  19. Kumar N, Choubey VK (2023) Experimental investigation on hot corrosion, oxidation and microstructure of WC based cermet HVOF coating. High Temp Corros Mater. https://doi.org/10.1007/s11085-023-10179-x

    Article  Google Scholar 

  20. Stokes J, Looney L (2001) HVOF system definition to maximise the thickness of formed components. Surf Coat Technol 148(1):18–24

    Article  CAS  Google Scholar 

  21. Kumar N, Choubey VK (2023) Effect of WC-Co and 86WC-10Co-4Cr coatings on type-II hot corrosion behaviour & microstructure characteristics at 650 degree celsius. Surf Coat Technol 469:129812

    Article  CAS  Google Scholar 

  22. Ham GS, Kreethi R, Kim HJ, Yoon SH, Lee KA (2021) Effects of different HVOF thermal sprayed cermet coatings on tensile and fatigue properties of AISI 1045 steel. J Mater Res Technol 15:6647–6658

    Article  CAS  Google Scholar 

  23. Mishra, N. K., Kumar, N., & Mishra, S. B. (2014). Hot corrosion behaviour of detonation gun sprayed Al2O3–40TiO2 coating on nickel based superalloys at 900 °C. Indian J Mater Sci.

  24. Kumar, N., & Choubey, V. K. (2021). Oxidation performance of Al2O3–40% TiO2 coating on Nickel and Cobalt based superalloys at 800 0 C. AIJR Abstracts, 26.

  25. Rodriguez SG, Torres B, López AJ, Ram EOJ (2019) Characterization and mechanical properties of stainless steel coatings deposited by HVOF on ZE41 magnesium alloy. Surf Coat Tech 359:73–84. https://doi.org/10.1016/j.surfcoat.2018.12.056

    Article  CAS  Google Scholar 

  26. Rodriguez SG, Torres B, López AJ, Ram EOJ (2016) 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection. Surf Coat Tech 287:9–19. https://doi.org/10.1016/j.surfcoat.2015.12.075

    Article  CAS  Google Scholar 

  27. Kumar N, Kumar V, Mishra SB (2018) Oxidation and hot corrosion performance coating on nickel of Al2 based O3–40% TiO superalloys. Adv Manuf Mater Sci Sel Extend Papers ICAMMS 2018:349

    Google Scholar 

  28. Prengel HG, Pfouts WR, Santhanam AT (1998) State of the art in hard coatings for carbide cutting tools. Surf Coat Technol 102(3):183–190

    Article  CAS  Google Scholar 

  29. De Damborenea J, Navas C, García J, Arenas M, Conde A (2007) Corrosion–erosion of TiN-PVD coatings in collagen and cellulose meat casing. Surf Coat Technol 201:5751–5757. https://doi.org/10.1016/j.surfcoat.2006.10.009

    Article  CAS  Google Scholar 

  30. Chun SY, Lee SJ, Lee CH, Chayahara A (2005) Nanometer-ranged metallic coatings by noble pulsed cathodic arc deposition. Mater Process Adv Electromagn Energy Sour 1:83–86

    Google Scholar 

  31. Annavarapu RK, Kim S, Wang M, Hart AJ, Sojoudi H (2019) Explaining evaporation-triggered wetting transition using local force balance model and contact line-fraction. Sci Rep 9(1):405

    Article  Google Scholar 

  32. Sojoudi H, Kim S, Zhao H, Annavarapu RK, Mariappan D, Hart AJ, McKinley GH, Gleason KKS (2017) Control of nanoporous microstructures by iCVD coating of carbon nanotubes. ACS Appl Mater Interfaces 9:43287–43299. https://doi.org/10.1021/acsami.7b13713

    Article  CAS  Google Scholar 

  33. Nemani SK, Barrier SH (2018) Performance of CVD graphene films using a facile P3HT thin film optical transmission test. J Nanomater 12:9681432. https://doi.org/10.1155/2018/9681432

    Article  CAS  Google Scholar 

  34. Sojoudi H, Nemani SK, Mullin K, Wilson MG, Al-Adwani H, Lababidi HM, Gleason KK (2019) A micro/nanoscale approach for studying scale formation and developing of scale-resistant surfaces. ACS Appl Mater Interfaces 11:7330–7337. https://doi.org/10.1021/acsami.8b18523

    Article  CAS  Google Scholar 

  35. Tavakoli MM, Azzellino G, Hempel M, Lu AY, Martin-Martinez FJ, Zhao J, Kong J (2020) Synergistic roll-to-roll transfer and doping of CVD-graphene using parylene for ambient-stable and ultra-lightweight photovoltaics. Adv Func Mater 30(31):2001924

    Article  CAS  Google Scholar 

  36. Priyan MS, Santhosh K, Sivaraman MA, Subith S, Sunil M (2016) Wear performance of Ti based powders coating on SS 304 by PVD method. J Mater Sci Surf Eng 4(3):372–375

    Google Scholar 

  37. Yang X, Zhang R, Pu J, He Z, Xiong L (2021) 2D graphene and h-BN layers application in protective coatings. Corros Rev 39(2):93–107

    Article  CAS  Google Scholar 

  38. Dehghanghadikolaei A, Namdari N, Mohammadian B, Fotovvati BJJOS (2018) Additive manufacturing methods: a brief overview. J Sci Eng Res 5(8):123–131

    CAS  Google Scholar 

  39. Dehghanghadikolaei A, Ansary J, Ghoreishi R (2018) Sol-gel process applications: A mini-review. Proc Nat Res Soc 2:02008. https://doi.org/10.11605/j.pnrs.201802008

    Article  Google Scholar 

  40. Thorpe M, Richter H (1992) A pragmatic analysis and comparison of HVOF processes. J Therm Spray Technol 1:161–170

    Article  CAS  Google Scholar 

  41. Tomiguchi, A., Sochi, Y., & Matsubara, Y. (1998, May). Advantages of induction heat treatment in the application of self-fluxing alloy to boiler tubes. In ITSC 1998 (pp. 1061–1065). ASM International.

  42. Shrestha S, Hodgkiess T, Neville A (2005) Erosion-corrosion behaviour of high-velocity oxy-fuel Ni-Cr-Mo-Si-B coatings under high-velocity seawater jet impingement. Wear 259:208–218. https://doi.org/10.1016/j.wear.2005.01.038

    Article  CAS  Google Scholar 

  43. Antonov M, Surzenkov A, Hussainova I, Goljandin D, Mikli V (2012) Effect of basalt addition on tribological performance of FeCrSiB HVOF coatings. Est J Eng 18(3):211

    Article  CAS  Google Scholar 

  44. Kalashnikova IA, Kalashnikov AV (2010) Weld Int 24:301–303

    Article  Google Scholar 

  45. Bulloch J, Callagy A (1999) An in situ wear-corrosion study on a series of protective coatings in large induced draft fans. Wear 233:284–292. https://doi.org/10.1016/S0043-1648(99)00229-X

    Article  Google Scholar 

  46. Skarvelis P, Papadimitriou G (2009) Plasma transferred arc composite coatings with self lubricating properties, based on Fe and Ti sulfides: Microstructure and tribological behavior. Surf Coat Technol 203:1384–1394. https://doi.org/10.1016/j.surfcoat.2008.11.010

    Article  CAS  Google Scholar 

  47. Goebel JA, Pettit FS, Gowar GW (1973) Mechanisms for the hot corrosion of nickel-base alloys. Metall Trans 4:261

    Article  CAS  Google Scholar 

  48. Yadav, S. K., Verma, A. S., & Gupta, V. (2015). Role of coating in improving high temperature oxidation of steel.

  49. Bressers J, Arzt E (1986) High temperature low cycle fatigue of inconel MA 6000. High Temp Alloys Gas Turb Other Appl 12:1067–1080

    Google Scholar 

  50. Kubarych, K. G., Boone, D. H., & Duncan, R. L. (1984, June). A long-term field test of advanced gas turbine airfoil coatings under a severe industrial environment. In Turbo expo: power for land, sea, and air (Vol. 79504, p. V005T11A007). American Society of Mechanical Engineers.

  51. De Menezes AWA, de Souza IA, de Carvalho Costa TH, de Carvalho Costa TC, de Sousa RRM, Nascimento RM, Feitor MC (2022) Study of the deposition of hydroxyapatite by plasma electrolytic oxidation (PEO) in stainless steel AISI 316LVM samples. J Mater Res Technol 18:1578–1589

    Article  Google Scholar 

  52. Bidabadi MHS, Siripongsakul T, Thublaor T, Wiman P, Chandra-ambhorn S (2022) Oxidation and Cr-evaporation behavior of MnCo based spinel and composite coated AISI 430 steel. Surf Coat Technol 434:128176

    Article  CAS  Google Scholar 

  53. Chaudhari TS, Pise AS, Mahato AK, Satyam K (2022) Study on the scale formation of AISI–1018 carbon steel in walking beam steel reheat furnace. Mater Today Proc 62:3916–3921

    Article  CAS  Google Scholar 

  54. Silva JL, Carneiro ARC, Castro GM, MartinsNunes EH, de Freitas V, Lins C, Junqueira RMR (2022) Influence of temperature on the electrochemical coloration process and properties of the AISI 304 and 430 colored stainless steel. J Market Res 16:102–109. https://doi.org/10.1016/j.jmrt.2021.11.117

    Article  CAS  Google Scholar 

  55. Spotorno R, Paravidino D, Delsante S, Piccardo P (2022) Volatilization of chromium from AISI 441 stainless steel: Time and temperature dependence. Surf Coat Technol 433:128125. https://doi.org/10.1016/j.surfcoat.2022.128125

    Article  CAS  Google Scholar 

  56. Chyrkin A, Gunduz KO, Asokan V, Svensson JE, Froitzheim J (2022) High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions. Corros Sci 203:110338

    Article  CAS  Google Scholar 

  57. Norouzi A, Soltanieh M, Rastegari S (2022) An electrophoretic co-deposition of metal oxides followed by in-situ copper manganese spinel synthesis on AISI-430 for application in SOFC interconnects. Int J Hydrogen Energy 47(31):14346–14360. https://doi.org/10.1016/j.ijhydene.2022.02.182

    Article  CAS  Google Scholar 

  58. Singh D, Cemin F, Jimenez MJM, Vinícius A, Alvarez F, Orlov D, Figueroa CA, Hosmani SS (2022) High-temperature oxidation behaviour of nanostructure surface layered austenitic stainless steel. Appl Surf Sci 581:152437. https://doi.org/10.1016/j.apsusc.2022.152437

    Article  CAS  Google Scholar 

  59. Chang C, Yan X, Deng Z, Lu B, Bolot R, Gardan J, Deng S, Chemkhi M, Liu M, Liao H (2022) Heat treatment induced microstructural evolution, oxidation behavior and tribological properties of Fe-12Cr-9Ni-2Al steel (CX steel) prepared using selective laser melting. Surf Coat Technol 429:127982

    Article  CAS  Google Scholar 

  60. Ma Z, Shen T, Wang Z, Zhou T, Chang H, Jin P, Liu C (2022) Improving the oxidation resistance of SIMP steel to liquid Pb-Bi eutectic by shot peening treatments. Appl Surf Sci 578:151910

    Article  CAS  Google Scholar 

  61. Vedaei-Sabegh A, Morin J-B, Jahazi M (2022) Influence of thermally grown oxide layers thickness on temperature evolution during the forging of large size steel ingots. Mater Chem Phys 275:125269. https://doi.org/10.1016/j.matchemphys.2021.125269

    Article  CAS  Google Scholar 

  62. Dhillon SS, Chawla V, Singh G (2022) Analysis of plasma gun sprayed coatings on SS-304 steel to evaluate cyclic oxidation and hot corrosion. Mater Today Proc 50:1580–1590

    Article  CAS  Google Scholar 

  63. Wang X, Zhang M, Zou Z, Song S, Han F, Qu S (2006) In situ production of Fe–TiC surface composite coatings by tungsten-inert gas heat source. Surf Coat Technol 200(20–21):6117–6122. https://doi.org/10.1016/j.surfcoat.2005.09.021

    Article  CAS  Google Scholar 

  64. Xinhong W, Zengda Z, Sili S, Shiyao Q (2006) Microstructure and wear properties of in situ TiC/FeCrBSi composite coating prepared by gas tungsten arc welding. Wear 260(1–2):25–29. https://doi.org/10.1016/j.wear.2005.03.018

    Article  CAS  Google Scholar 

  65. Shen Q, Li Y, Zhao J, Liu D, Yang Y (2021) Effects of annealing on the microstructure and wear resistance of laser cladding CrFeMoNbTiW high-entropy alloy coating. Crystals 11(9):1096

    Article  CAS  Google Scholar 

  66. Zhao C, Xing X, Guo J, Shi Z, Zhou Y, Ren X, Yang Q (2019) Micro-properties of (Nb, M) C carbide (M= V, Mo, W and Cr) and precipitation behavior of (Nb, V) C in carbide reinforced coating. J Alloy Compd 788:852–860

    Article  CAS  Google Scholar 

  67. Dyuti S, Mridha S, Shaha SK (2011) Wear behavior of modified surface layer produced by TIG melting of preplaced Ti powder in nitrogen environment. Adv Mater Res 264:1427–1432

    Article  Google Scholar 

  68. Wang L, Tian H, Gao H, Xie F, Zhao K, Cui Z (2019) “Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment. Appl Surf Sci 492:792–807. https://doi.org/10.1016/j.apsusc.2019.06.198

    Article  CAS  Google Scholar 

  69. Tian HL, Wei SC, Chen YX, Tong H, Liu Y, Xu BS (2013) Surface remelting treated high velocity arc sprayed FeNiCrAlBRE coating by tungsten inert gas. Phys Procedia 50:322–327. https://doi.org/10.1016/j.phpro.2013.11.051

    Article  CAS  Google Scholar 

  70. Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M, Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M, Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M, Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M (2016) Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding. Surf Coat Technol 285:47–56. https://doi.org/10.1016/j.surfcoat.2015.11.019

    Article  CAS  Google Scholar 

  71. Ya-long Li, Tian-shuna D, Guo-lua Li, Wang Hai-doub Fu, Bin-Guoa Z-D, Xiu-kai Z (2018) Microstructure and mechanical property of Ni-based thick coating remelted by gas tungsten arc. Vacuum 155(2018):260–269. https://doi.org/10.1016/j.vacuum.2018.05.053

    Article  CAS  Google Scholar 

  72. Guo-lu Li, Ya-long Li, Dong Tian-shun Fu, Bin-Guo W-D, Xiao-dong Z, Xiu-kai Z (2018) Microstructure and interface characteristics of NiCrBSi thick coating remelted by TIG process. Vacuum 156(2018):440–448. https://doi.org/10.1016/j.vacuum.2018.07.020

    Article  CAS  Google Scholar 

  73. Dong, H. (Ed.). (2010). Surface engineering of light alloys: Aluminium, magnesium and titanium alloys.

  74. Liu J, Zhang J, Liu P, Deng L, Zhang S (2020) Microstructure and wear behaviour of laser-cladded γ-Niss/Mo2Ni3Si coating. Surf Eng 36(12):1270–1277

    Article  CAS  Google Scholar 

  75. Guo-lu L, Jing-min Y, Tian-shun D, Xiang-wei Z, Bin-guo F, Jiadong S (2020) Wear resistance under different temperatures of NiCr-Cr 3 C 2 coating remelted by tungsten inert gas arc. J Mater Eng Perform 29:8013–8024

    Article  Google Scholar 

  76. Wang PZ, Yang YS, Ding G, Qu JX, Shao HS (1997) Laser cladding coating against erosion-corrosion wear and its application to mining machine parts. Wear 209(1–2):96–100

    Article  CAS  Google Scholar 

  77. Herrera Y, Grigorescu IC, Ramirez J, Di Rauso C, Staia MH (1998) Microstructural characterization of vanadium carbide laser clad coatings. Surf Coat Technol 108:308–311

    Article  Google Scholar 

  78. Li Q, Lei T, Chen W (1999) Microstructural characterization of laser-clad TiCp-reinforced Ni–Cr–B–Si–C composite coatings on steel. Surf Coat Technol 114(2–3):278–284. https://doi.org/10.1016/S0257-8972(99)00055-9

    Article  CAS  Google Scholar 

  79. Wang K, Zhang Q, Sun M, Wei X, Zhu Y (2001) Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl Surf Sci 174(3–4):191–200. https://doi.org/10.1016/S0169-4332(01)00017-4

    Article  CAS  Google Scholar 

  80. Yang S, Liu W, Zhong M, Wang Z, Kokawa H (2005) Fabrication of in-situ synthesized TiC particles reinforced composite coating by powder feeding laser cladding. J Mater Sci 40(9–10):2751–2754

    CAS  Google Scholar 

  81. Navas C, Conde A, Cadenas M, Damborenea J (2006) Tribological properties of laser clad Stellite 6 coatings on steel substrates. Surf Eng 22(1):26–34. https://doi.org/10.1179/174329406X84949

    Article  CAS  Google Scholar 

  82. Xu J, Liu W, Zhong M (2006) Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding. Surf Coat Technol 200(14–15):4227–4232. https://doi.org/10.1016/j.surfcoat.2005.01.036

    Article  CAS  Google Scholar 

  83. Zhu QJ, Wang XH, Qu SY, Zou ZD (2008) Amorphization of Fe38Ni30Si16B14V2 surface layers by laser cladding. Trans Nonferrous Metals Soc China 18(2):270–273

    Article  Google Scholar 

  84. Wang X, Zhang M, Liu X, Qu S, Zou Z (2008) Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surf Coat Technol 202(15):3600–3606. https://doi.org/10.1016/j.surfcoat.2007.12.039

    Article  CAS  Google Scholar 

  85. Qu S, Wang X, Zhang M, Zou Z (2008) Microstructure, and wear properties of Fe–TiC surface composite coating by laser cladding. J Mater Sci 43(5):1546–1551

    Article  CAS  Google Scholar 

  86. Ye X, Ma M, Liu W, Li L, Zhong M, Liu Y, Wu Q (2011) Synthesis and characterization of high-entropy alloy FeCoNiCuCr by laser cladding. Adv Mater Sci Eng 2011:1–7. https://doi.org/10.1155/2011/485942

    Article  CAS  Google Scholar 

  87. Zhou S, Dai X, Zheng H (2013) Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding. Opt Laser Technol 44(1):190–197. https://doi.org/10.1016/j.optlastec.2011.06.017

    Article  CAS  Google Scholar 

  88. Wang XH, Pan XN, Du BS, Li S (2013) Production of in situ TiB2+TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding. Trans Nonferrous Metals Soc China 23(6):1689–1693. https://doi.org/10.1016/S1003-6326(13)62649-7

    Article  CAS  Google Scholar 

  89. Ayyagari A, Hasannaeimi V, Grewal HS, Arora H, Mukherjee S (2018) Corrosion, erosion and wear behavior of complex concentrated alloys: A review. Metals 8(8):603

    Article  Google Scholar 

  90. Wiman P, Thublaor T, Rojhirunsakool T, Bidabadi MHS, Yang Z-G, Siripongsakul T, Chandra-ambhorn W, Chandra-ambhorn S (2022) Corrosion behaviour of AISI 430 stainless steel in O2–40%H2O at 800 °C. Corros Sci 56:110323. https://doi.org/10.1016/j.corsci.2022.110323

    Article  CAS  Google Scholar 

  91. Pineda F, Walczak M, Vilchez F, Guerra C, Escobar R, Sancy M (2022) “Evolution of corrosion products on ASTM A36 and AISI 304L steels formed in exposure to molten NaNO3–KNO3 eutectic salt: Electrochemical study. Corros Sci 196:110047. https://doi.org/10.1016/j.corsci.2021.110047

    Article  CAS  Google Scholar 

  92. Yong Xu, Huang Y, Cai F, Dongzhu Lu, Wang X (2022) Study on corrosion behavior and mechanism of AISI 4135 steel in marine environments based on field exposure experiment. Sci Total Environ 830:154864. https://doi.org/10.1016/j.scitotenv.2022.154864

    Article  CAS  Google Scholar 

  93. Bozkurt YB, Kovac H, Yetim AF, Çelik A (2022) Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel. Surf Coat Technol 440:128444. https://doi.org/10.1016/j.surfcoat.2022.128444

    Article  CAS  Google Scholar 

  94. López-Ojeda L, Vargas-Gutiérrez G (2022) High wear resistance and better pitting corrosion resistance of AISI 316L stainless steel by a self-protective oxy-nitrocarburizing paste. J Mater Res Technol 16:1803–1813. https://doi.org/10.1016/j.jmrt.2021.12.118

    Article  CAS  Google Scholar 

  95. Cruz-Hernández VL, García-Hernández R, López-Morelos VH, García-Rentería MA, González-Sánchez J (2022) Intergranular corrosion of AISI 347 stainless steel welds obtained under electromagnetic interaction of low intensity. Mater Lett 312:131679. https://doi.org/10.1016/j.matlet.2022.131679

    Article  CAS  Google Scholar 

  96. Wang W, Tamakloe S, Deng Z, Li L, Cai W, Lu K (2022) Effects of processing temperature on the corrosion and tribocorrosion resistance of perhydropolysilazane-derived coatings on AISI 304 steel. Surf Coat Technol 439:128463

    Article  CAS  Google Scholar 

  97. Liu Q, Qian J, Barker R, Wang C, Pessu ANF (2022) Effect of thermal cycling on the corrosion behaviour of stainless steels and Ni-based alloys in molten salts under air and argon. Sol Energy 238:248–257. https://doi.org/10.1016/j.solener.2022.04.041

    Article  CAS  Google Scholar 

  98. Caraguay SJ, Pereira TS, Giacomelli RO, Cunha A, Pereira M, Xavier FA (2022) “The effect of laser surface textures on the corrosion resistance of epoxy coated steel exposed to aggressive environments for offshore applications. Surf Coat Technol 437:12837. https://doi.org/10.1016/j.surfcoat.2022.128371

    Article  CAS  Google Scholar 

  99. Yanardağ T, Danışman Ş, Maşlak M (2023) Corrosion performance of the Zn coatings on AISI 1212 mild steel in 0.5 M NaCl medium: influence of thicknesses of metallic film. Protect Metals Phys Chem Surf 6:1–12

    Google Scholar 

  100. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981–988

    Article  Google Scholar 

  101. Winer WO, Peterson MB (1980) Wear control handbook. American Society of mechanical engineers, New York

    Google Scholar 

  102. Medina S, Olver AV (2002) An analysis of misaligned spline couplings. Proc Instn Mech Engrs Part J J Eng Tribol 216:269–279

    Article  Google Scholar 

  103. Sharif KJ, Evans HP, Snidle RW (2006) Prediction of the wear pattern in worm gears. Wear 261(5–6):666–673

    Article  CAS  Google Scholar 

  104. Dallaire S, Dufour M, Gauthier B (1993) Characterization of wear damage in coatings by optical profilometry. J Therm Spray Technol 2:363–368

    Article  CAS  Google Scholar 

  105. Lofaj F, Ferdinandy M, Cempura G, Dusza J (2012) Nanoindentation, AFM and tribological properties of thin nc-WC/aC Coatings. J Eur Ceram Soc 32(9):2043–2051

    Article  CAS  Google Scholar 

  106. Lofaj FRANTIŠEK, Mikula M, Grancic B, Cempura G, Hornak P, Kus P, Kottfer D (2011) Tribological properties of TiBx and WC/C coatings. Ceram Silik 55(4):305–311

    CAS  Google Scholar 

  107. Kennedy FE, Ye Y, Baker I, White RR, Barry RL, Tang AY, Song M (2022) Development of a new cryogenic tribotester and its application to the study of cryogenic wear of AISI 316 stainless steel. Wear 496:204309

    Article  Google Scholar 

  108. Stachowiak G, Batchelor AW (2013) Engineering Tribology. Butterworth-heinemann, London

    Google Scholar 

  109. Arndt RE (1981) Cavitation in fluid machinery and hydraulic structures. Ann Rev Fluid Mech 13:273–326

    Article  Google Scholar 

  110. Wood RJ (2017) Marine wear and tribocorrosion. Wear 376:893–910. https://doi.org/10.1016/j.wear.2017.01.076

    Article  CAS  Google Scholar 

  111. Finnie I (1995) Some reflections on the past and future of erosion. Wear 186:1–10

    Article  Google Scholar 

  112. Nair R, Selvam K, Arora H, Mukherjee S, Singh H, Grewal H (2017) Slurry erosion behavior of high entropy alloys. Wear 386:230–238. https://doi.org/10.1016/j.wear.2017.01.020

    Article  CAS  Google Scholar 

  113. Zhao J, Ji X, Shan Y, Fu Y, Yao Z (2016) On the microstructure and erosion-corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment. Mater Sci Technol 32:1271–1275. https://doi.org/10.1080/02670836.2015.1116494

    Article  CAS  Google Scholar 

  114. Wu C, Zhang S, Zhang C, Zhang H, Dong S (2017) Phase evolution and cavitation erosion-corrosion behaviour of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J Alloy Compd 698:761–770. https://doi.org/10.1016/j.jallcom.2016.12.196

    Article  CAS  Google Scholar 

  115. Eid EA, Sadawy MM, Reda AM (2022) Computing the dynamic friction coefficient and evaluation of radiation shielding performance for AISI 304 stainless steel. Mater Chem Phys 277:125446. https://doi.org/10.1016/j.matchemphys.2021.125446

    Article  CAS  Google Scholar 

  116. Naeem M, Awan S, Shafiq M, Raza HA, Iqbal J, Díaz-Guillén JC, Abrar M (2022) Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating. Ceram Int 48(15):21473–21482

    Article  Google Scholar 

  117. Babur MZ, Iqbal Z, Shafiq M, Naz MY, Makhlouf MM (2022) Hybrid TiN-CCPN coating of AISI-201 stainless steel by physical vapor deposition combined with cathodic cage plasma nitriding for improved tribological properties”. J Build Eng 45:103512. https://doi.org/10.1016/j.jobe.2021.103512

    Article  Google Scholar 

  118. Moradiani A, Beiranvand ZM, Chandima Ratnayake RM, Aliabadi A, Rasoulinia M (2022) The effect of laser surface melting on the retained austenite and wear properties of AISI D2 tool steel. Optik 252:168469. https://doi.org/10.1016/j.ijleo.2021.168469

    Article  CAS  Google Scholar 

  119. He J, Peng J, Ren Y, Cai Z, Liu J, Zhu M (2022) Study on improving fretting wear properties of AISI 4135 steel via diverse surface modifications under grease lubrication. Wear 490:204210

    Article  Google Scholar 

  120. Singh H, Singh AK, Singla YK, Chattopadhyay K, Saini A, Singh K (2022) Interpretation of the wear characteristics of AISI 4140 under nano-fly ash based engine lubricant. Mater Today Proc 50:1683–1689

    Article  CAS  Google Scholar 

  121. Woodward RG, Toumpis A, Galloway A (2022) The influence of cementite spheroidizing duration on the microstructure and sliding wear response of grey cast iron against AISI 4330”. Wear 488–489:204155. https://doi.org/10.1016/j.wear.2021.204155

    Article  CAS  Google Scholar 

  122. González-Hernández A, Morales-Cepeda AB, Caicedo JC, Amaya C, Olive-Méndez SF (2022) Structure, functional groups analysis and tribo-mechanical behavior of carbide and nitride coatings deposited on AISI 1060 substrates by RF-magnetron sputtering. J Market Res 18:5432–5443

    Google Scholar 

  123. Buytoz S, Ulutan M, Yildirim MM (2005) Dry sliding wear behavior of TIG welding clad WC composite coatings. Appl Surf Sci 252(5):1313–1323. https://doi.org/10.1016/j.apsusc.2005.02.088

    Article  CAS  Google Scholar 

  124. Tosun G (2014) Ni–WC coating on AISI 1010 steel using TIG: microstructure and microhardness. Arab J Sci Eng 39(3):2097–2106. https://doi.org/10.1007/s13369-013-0754-3

    Article  CAS  Google Scholar 

  125. Peng DX (2014) Optimizing wear resistance of ceramic (TiN, WC and TiC) clad layer by gas tungsten arc welding (GTAW). Indust Lubr Tribol 66(3):452–458

    Article  Google Scholar 

  126. Hodgkiess T, Neville A, Shrestha S (1999) Electrochemical and mechanical interactions during erosion–corrosion of a high-velocity oxy-fuel coating and a stainless steel. Wear 233:623–634. https://doi.org/10.1016/S0043-1648(99)00246-X

    Article  Google Scholar 

  127. De Souza VA, Neville A (2003) Corrosion and erosion damage mechanisms during erosion–corrosion of WC–Co–Cr cermet coatings. Wear 255(1–6):146–156. https://doi.org/10.1016/S0043-1648(03)00210-2

    Article  CAS  Google Scholar 

  128. Kumar M, Singh H, Singh N (2015) Fire side erosion–corrosion protection of boiler tubes by nanostructured coatings. Mater Corros 66(7):695–709. https://doi.org/10.1002/maco.201407954

    Article  CAS  Google Scholar 

  129. Hemmati AR, Soltanieh SM, Masoudpanah SM (2018) On the interaction between erosion and corrosion in chromium carbide coating. J Bio Tribo Corros 4(1):1–11. https://doi.org/10.1007/s40735-018-0128-1

    Article  Google Scholar 

  130. Thi HP, Van TN, Nguyen TA, Le Thu Q, Thi LP, Bich TD, Quoc CL (2021) Cr 3 C 2–25NiCr cermet coating: Preparation, PTFE sealant, wear and corrosion resistances. J Therm Spray Technol 30(3):716–724. https://doi.org/10.1007/s11666-021-01155-5

    Article  CAS  Google Scholar 

  131. Xie X, Yin B, Yin F, Ouyang X (2021) Corrosion behavior of FeB-30 wt% Al0.25FeNiCoCr cermet coating in liquid zinc. Coatings 11(6):622. https://doi.org/10.3390/coatings11060622

    Article  CAS  Google Scholar 

  132. Kim KW, Kim YK, Park SH, Lee KA (2021) Laser cladding of WC/T-800 CermeT: fabrication, microstructure and wear properties. Arch Metall Mater 66(3):713–717

    CAS  Google Scholar 

  133. Lin J, Hong S, Zheng Y, Sun W, Kang M, Fu X (2021) Cavitation erosion resistance in NaCl medium of HVOF sprayed WC-based cermet coatings at various flow velocities: A comparative study on the effect of Ni and CoCr binder phases. Int J Refract Metals Hard Mater 94:105407. https://doi.org/10.1016/j.ijrmhm.2020.105407

    Article  CAS  Google Scholar 

  134. Qiao L, Yuping Wu, Hong S, Long W, Cheng J (2021) Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram Int 47(2):1829–1836. https://doi.org/10.1016/j.ceramint.2020.09.009

    Article  CAS  Google Scholar 

  135. Ribu DC, Rajesh R, Thirumalaikumarasamy D, Vignesh S (2021) Influence of rotational speed, angle of impingement, concentration of slurry and exposure time on erosion performance of HVOF sprayed cermet coatings on 35CrMo steel. Mater Today Proc 12:307. https://doi.org/10.1016/j.matpr.2021.01.307

    Article  CAS  Google Scholar 

  136. Huang Q, Qin E, Li W, Wang B, Pan C, Wu S (2020) The cavitation resistance of WC-CoCr cermet coating deposited by HVOF for hydraulic application. J. Therm. Spray Eng 3(1):68–73

    Article  Google Scholar 

  137. Fedrizzi L, Rossi S, Cristel R, Bonora PL (2004) Corrosion and wear behaviour of HVOF cermet coatings used to replace hard chromium. Electrochim Acta 49(17–18):2803–2814. https://doi.org/10.1016/j.electacta.2004.01.043

    Article  CAS  Google Scholar 

  138. Hong S, Yuping Wu, Wang Bo, Zhang J, Zheng Y, Qiao L (2017) The effect of temperature on the dry sliding wear behavior of HVOF sprayed nanostructured WC-CoCr coatings. Ceram Int 43(1):458–462. https://doi.org/10.1016/j.ceramint.2016.09.180

    Article  CAS  Google Scholar 

  139. Pang X, Zhou F, Li B, Jiang J, Zhou J (2021) Optical thermostability and weatherability of TiN/TiC-Ni/Mo cermet-based spectral selective absorbing coating by laser cladding. Opt Mater 117:111195

    Article  CAS  Google Scholar 

  140. Singh J, Singh JP (2022) Performance analysis of erosion resistant Mo2C reinforced WC-CoCr coating for pump impeller with Taguchi’s method. Indust Lubr Tribol 74(4):431–441

    Article  Google Scholar 

  141. Korobov Y, Alwan H, Soboleva N, Makarov A, Lezhnin N, Shumyakov V, Deviatiarov M (2022) Cavitation resistance of WC-10Co4Cr and WC-20CrC-7Ni HVAF coatings. J Therm Spray Technol 12:1–13

    Google Scholar 

  142. Shien Z, Yingjun P, Heng Z, Deqing KE, Ling Y, Xingyu Z (2021) Corrosion resistance of boride cladding layer on surface of 304 stainless steel. J Chin Soc Corros Protect 41(6):843–848

    Google Scholar 

Download references

Acknowledgements

The authors of this review paper express their appreciation to the MED, NIT Patna, Bihar, India.

Author information

Authors and Affiliations

Authors

Contributions

N.K. was involved in conceptualization, formal analysis, writing, investigation, validation, visualization, writing—review, and editing, and V.K.C. did supervision.

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Choubey, V.K. Recent trends in coating processes on various AISI steel substrates: A review. J Mater Sci 59, 395–422 (2024). https://doi.org/10.1007/s10853-023-09239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09239-z

Navigation