Skip to main content
Log in

Comparative Evaluation of Oxidation Resistance of Detonation Gun-Sprayed Al2O3–40%TiO2 Coating on Nickel-Based Superalloys at 800 °C and 900 °C

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

High-temperature oxidation is the major degradation mechanism of boiler and gas turbine components. Superalloys are used in these applications because of their superior mechanical properties and creep resistance, but they lack resistance to oxidation under aggressive environment. In the present investigation, Al2O3–40%TiO2 coating was deposited on Superni718 and Superni600 superalloys by a detonation gun spray process. The as-sprayed coating was characterized by SEM analysis. The high-temperature oxidation behavior of Superni718 and Superni600 and Al2O3–40%TiO2 coating on these superalloys was evaluated in air under cyclic conditions at 800 °C and 900 °C for a total duration of 50 cycles. Each cycle consisted of keeping the samples for one hour at the elevated temperature followed by 20 min cooling in ambient air. Oxidation kinetics were studied using a thermo-gravimetric technique and found to follow the parabolic rate law. The coating was successfully formulated using a detonation gun spray process. The coating was found to be adherent to the substrate superalloys. It was found that among the two alloys, uncoated and coated Superni600 superalloys have much better oxidation resistance as compared to uncoated Superni718 superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. B. Heimann, Plasma Spray Coating Principles and Applications, 2nd ed (VCH Weinheim VCH Publishers Inc, New York, 2008).

    Google Scholar 

  2. R. B. Heimann and H. D. Lehmann, Recent Patents on Mat. Science I, 41 (2008).

    Article  Google Scholar 

  3. M. H. Li, X. F. Sun, J. G. Li, Z. Y. Zhang, T. Jin, H. R. Guan, and Z. Q. Hu, Oxidation of Metals 59, 591 (2003).

    Article  CAS  Google Scholar 

  4. N. B. Maledi, J. H. Potgieter, M. Sephton, L. A. Cornish, L. Chown, R. Suss, Hot Corrosion Behaviour of Pt-Alloys for Application in the Next Generation of Gas Turbines, International Platinum Conference - Platinum Surges Ahead. The Southern African Institute of Mining and Metallurgy, 81, (2006).

  5. S. B. Mishra, K. Chandra, and S. Prakash, Surface and Coatings Technology 216, 23 (2013).

    Article  CAS  Google Scholar 

  6. S. B. Mishra, S. Prakash, and K. Chandra, Wear 260, 422 (2006).

    Article  CAS  Google Scholar 

  7. J. S. Zhang, Z. Q. Hu, Y. Murata, M. Morinaga, and N. Yukawa, Metallurgical and Materials Transactions 24A, 2443 (1993).

    Article  CAS  Google Scholar 

  8. S. Esmaeili, C. C. Engler-Pinto Jr., B. Iischner, and F. Rezai-Aria, Scripta Metallurgica et Materialia 32, 1777 (1995).

    Article  CAS  Google Scholar 

  9. S. Kamal, R. Jayaganthan, and S. Prakash, Bulletin of Materials Science 33, 299 (2010).

    Article  CAS  Google Scholar 

  10. T. S. Sidhu, R. D. Agarwal, and S. Prakash, Surface and Coatings Technology 198, 441 (2005).

    Article  CAS  Google Scholar 

  11. B. Pieraggi and F. Dabosi, Materials and Corrosion 38, 584 (1987).

    Article  CAS  Google Scholar 

  12. L. Huang, X. F. Sun, H. R. Guan, and Z. Q. Hu, Oxidation of Metals 65, 207 (2006).

    Article  CAS  Google Scholar 

  13. M. G. Hocking, Surface and Coatings Technology 62, 460 (1993).

    Article  CAS  Google Scholar 

  14. P. S. Sidky and M. G. Hocking, British Corrosion Journal 34, 171 (1991).

    Article  CAS  Google Scholar 

  15. O. Knotek: in Handbook of Hard Coatings: Deposition Technologies, properties and Applications, ed. R. F. Bunshah, (Noyes Publishing, Park Ridge, 2001) p. 77

  16. J. Sure, A. R. Shankar, and U. K. Mudali, Optics & Laser Technology 48, 366 (2013).

    Article  CAS  Google Scholar 

  17. J. Zhang, J. He, Y. Dong, X. Li, and D. Yan, Journal of Materials Processing Technology 197, 31 (2008).

    Article  CAS  Google Scholar 

  18. H. Hazar and U. Ozturk, Renewable Energy 35, 2211 (2010).

    Article  CAS  Google Scholar 

  19. M. Kasparova, S. Houdkova, J. Cubrova, Thermally Sprayed Coatings for High Temperature Application, Metal 2012, (Brno, Czech Republic, 2012), p. 1

  20. Y. Zenf, S. W. Lee, and C. X. Ding, Materials Letters 57, 495 (2002).

    Article  Google Scholar 

  21. Y. Wang, S. Jiang, M. Wang, S. Wang, T. D. Xiao, and P. R. Strutt, Wear 237, 176 (2000).

    Article  CAS  Google Scholar 

  22. G. R. Li, L. S. Wang, W. W. Zhang, G. J. Yang, X. F. Chen, and W. X. Zhang, Tailoring degradation- resistant thermal barrier coatings based on the orientation of spontaneously formed pores: from retardation to self-improvement. Composites Part B: Engineering 181, 107567 (2020).

    Article  CAS  Google Scholar 

  23. M. J. Liu, M. Zhang, X. F. Zhang, G. R. Li, Q. Zhang, C. X. Li, C. J. Li, and G. J. Yang, Transport and deposition behaviors of vapor coating materials in plasma spray physical vapor deposition. Applied Surface Science 486, 80 (2019).

    Article  CAS  Google Scholar 

  24. G. H. Meng, B. Y. Zhang, H. Liu, G. J. Yang, T. Xu, X. C. Li, and C. J. Li, Vacuum heat treatment mechanisms promoting the adhesion strength of thermally sprayed metallic coatings. Surface and Coatings Technology 344, 102 (2018).

    Article  CAS  Google Scholar 

  25. K. Chokethawai, D. G. McCartney, and P. H. Shipway, Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings. Journal of Alloys and Compounds 480, 351 (2009).

    Article  CAS  Google Scholar 

  26. H. Zhou, C. Zhang, W. Wang, M. Yasir, and L. Liu, Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders. Journal of Materials Science & Technology 31, 43 (2015).

    Article  CAS  Google Scholar 

  27. E. Sadeghi and S. Joshi, Chlorine-induced high-temperature corrosion and erosion corrosion of HVAF and HVOF-sprayed amorphous Fe-based coatings. Surface and Coatings Technology 371, 20 (2019).

    Article  CAS  Google Scholar 

  28. H. Guo, S. Zhang, W. H. Sun, and J. Q. Wang, Differences in dry sliding wear behaviour between HVAF-sprayed amorphous steel and crystalline stainless steel coatings. Journal of Materials Science & Technology 35, 865 (2019).

    Article  CAS  Google Scholar 

  29. A. Kobayashi, S. Yano, H. Kimura, et al., Fe-based metallic glass coatings produced by smart plasma spraying process. Material Science and Engineering B 148, 110 (2008).

    Article  CAS  Google Scholar 

  30. Z. H. Chu, F. S. Wei, X. W. Zheng, C. Y. Zhang, and Y. Yang, Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying. Journal of Alloys and Compounds 785, 206 (2019).

    Article  CAS  Google Scholar 

  31. J. Henao, A. Concustell, S. Dosta, G. Bolelli, I. G. Cano, L. Lusvarghi, and J. M. Guilemany, Deposition mechanisms of metallic glass particles by cold gas spraying. Acta Materialia 125, 327 (2017).

    Article  CAS  Google Scholar 

  32. J. Su, J. J. Kang, W. Yue, G. Z. Ma, Z. Q. Fu, L. N. Zhu, D. S. She, H. D. Wang, and C. B. Wang, Comparison of tribological behavior of Fe-based metallic glass coatings fabricated by cold spraying and high velocity air fuel spraying. Journal of Non-Crystalline Solids 522, 119582 (2019).

    Article  CAS  Google Scholar 

  33. J. G. Gao, Z. H. Tang, C. L. Wang, M. Q. Guo, and Y. J. Cui, Microstructure, mechanical and oxidation characteristics of detonation gun and HVOF sprayed MCrAlYX coatings. Transactions of Nonferrous Metals Society of China 25, 817 (2015).

    Article  CAS  Google Scholar 

  34. X. Li, et al., Journal of Non-Crystalline Solids 537, 120018 (2020).

    Article  CAS  Google Scholar 

  35. H. Wu, X. D. Lan, Y. Liu, F. Li, W. D. Zhang, Z. J. Chen, X. F. Zai, and H. Zeng, Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating. Transactions of Nonferrous Metals Society of China 26, 1629 (2016).

    Article  CAS  Google Scholar 

  36. P. P. Bandyopadhyay, D. Chicot, B. Venkateshwarlu, V. Racherla, X. Decoopman, and J. Lesage, Mechanics of Materials 53, 61 (2012).

    Article  Google Scholar 

  37. M. S. Gok, International Journal of Physical Sciences 5, 535 (2010).

    CAS  Google Scholar 

  38. A. TaoTao, W. Fen, and F. XiaMoing, Science in China Series E: Technological Sciences 52, 1273 (2009).

    Article  Google Scholar 

  39. Y. Wang, C. G. Li, W. Tian, and Y. Yang, Applied Surface Science 255, 8603 (2009).

    Article  CAS  Google Scholar 

  40. A. S. Brasunas, NACE Basic Corrosion Course, (NACE, Houston, 1977), p. 12.1

  41. G. A. Greene and C. C. Finfrock, Oxidation of Metals 55, 505 (2001).

    Article  CAS  Google Scholar 

  42. H. Singh, D. Puri, S. Prakash, and V. V. Rama Rao, Metallurgical and Materials Transactions A 37A, 3047 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Choubey, V.K. Comparative Evaluation of Oxidation Resistance of Detonation Gun-Sprayed Al2O3–40%TiO2 Coating on Nickel-Based Superalloys at 800 °C and 900 °C. High Temperature Corrosion of mater. 99, 359–373 (2023). https://doi.org/10.1007/s11085-023-10157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10157-3

Keywords

Navigation