Skip to main content
Log in

ReaxFF molecular dynamics study of early oxidation of nickel nanoparticles

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel nanoparticles (NPs) are widely used in many fields, but contact with oxygen leads to structural damage and degradation of their properties, so a comprehensive understanding of their oxidation mechanism is of great importance. In this work, we performed reactive molecular dynamics simulations to investigate the oxidation mechanism of Ni NPs. The results show that the oxidation of Ni NPs mainly includes the formation of surface oxide nuclei, oxide extension to form oxide layers covering the surface, and the inward growth of oxide layers. We have investigated the structure of the oxidation products and found that it consists of Ni–O tetrahedra interconnected by sharing one Ni atom. In addition, the effects of initial oxygen concentration, temperature, and humid environment on oxidation behavior are discussed. This work contributes to the understanding of the oxidation of Ni NPs at the atomic scale, which helps in the design of anti-corrosion of Ni NPs and the preparation of novel nickel oxides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

The data of this study are available on request from authors.

References

  1. Sharma A, Hickman J, Gazit N, Rabkin E, Mishin Y (2018) Nickel nanoparticles set a new record of strength. Nat Commun 9:4102. https://doi.org/10.1038/s41467-018-06575-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pina G, Louis C, Keane MA (2003) Nickel particle size effects in catalytic hydrogenation and hydrodechlorination: phenolic transformations over nickel/silica. Phys Chem Chem Phys 5:1924–1931. https://doi.org/10.1039/B212407F

    Article  CAS  Google Scholar 

  3. Mahata N, Cunha AF, Órfão JJM, Figueiredo JL (2008) Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon. Appl Catal A 351:204–209. https://doi.org/10.1016/j.apcata.2008.09.015

    Article  CAS  Google Scholar 

  4. Ducati C, Alexandrou I, Chhowalla M, Robertson J, Amaratunga GAJ (2004) The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J Appl Phys 95:6387–6391. https://doi.org/10.1063/1.1728293

    Article  CAS  Google Scholar 

  5. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934. https://doi.org/10.1039/B207789B

    Article  Google Scholar 

  6. Lee IS, Lee N, Park J et al (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659. https://doi.org/10.1021/ja063177n

    Article  CAS  PubMed  Google Scholar 

  7. Bodelón G, Mourdikoudis S, Yate L, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2014) Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins. ACS Nano 8:6221–6231. https://doi.org/10.1021/nn5016665

    Article  CAS  PubMed  Google Scholar 

  8. Karmhag R, Tesfamichael T, Wäckelgård E, Niklasson GA, Nygren M (2000) Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix. Sol Energy 68:329–333. https://doi.org/10.1016/S0038-092X(00)00025-6

    Article  CAS  Google Scholar 

  9. Park S-H, Kim H-S (2014) Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films 550:575–581. https://doi.org/10.1016/j.tsf.2013.11.075

    Article  CAS  Google Scholar 

  10. El Boujlaidi A, Rochdi N, Tchalala R, Enriquez H, Mayne AJ, Oughaddou H (2020) Growth and characterization of nickel oxide ultra-thin films. Surf Interfaces 18:100433. https://doi.org/10.1016/j.surfin.2020.100433

    Article  CAS  Google Scholar 

  11. Zhang X, Fu C, Xia Y et al (2019) Atomistic origin of the complex morphological evolution of aluminum nanoparticles during oxidation: a chain-like oxide nucleation and growth mechanism. ACS Nano 13:3005–3014. https://doi.org/10.1021/acsnano.8b07633

    Article  CAS  PubMed  Google Scholar 

  12. Pratt A, Lari L, Hovorka O et al (2014) Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nat Mater 13:26–30. https://doi.org/10.1038/nmat3785

    Article  CAS  PubMed  Google Scholar 

  13. Xia W, Yang Y, Meng Q et al (2018) Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy. ACS Nano 12:7866–7874. https://doi.org/10.1021/acsnano.8b02170

    Article  CAS  PubMed  Google Scholar 

  14. Railsback JG, Johnston-Peck AC, Wang J, Tracy JB (2010) Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4:1913–1920. https://doi.org/10.1021/nn901736y

    Article  CAS  PubMed  Google Scholar 

  15. Jeangros Q, Hansen TW, Wagner JB, Dunin-Borkowski RE, Hébert C, Van Herle J, Hessler-Wyser A (2014) Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope. Acta Mater 67:362–372. https://doi.org/10.1016/j.actamat.2013.12.035

    Article  CAS  Google Scholar 

  16. Chenna S, Banerjee R, Crozier PA (2011) Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. ChemCatChem 3:1051–1059. https://doi.org/10.1002/cctc.201000238

    Article  CAS  Google Scholar 

  17. Chopra N, Claypoole L, Bachas LG (2010) Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures. J Nanopart Res 12:2883–2893. https://doi.org/10.1007/s11051-010-9879-4

    Article  CAS  Google Scholar 

  18. Sainju R, Rathnayake D, Tan H, Bollas G, Dongare AM, Suib SL, Zhu Y (2022) In situ studies of single-nanoparticle-level nickel thermal oxidation: from early oxide nucleation to diffusion-balanced oxide thickening. ACS Nano 16:6468–6479. https://doi.org/10.1021/acsnano.2c00742

    Article  CAS  PubMed  Google Scholar 

  19. Karmhag R, Niklasson GA, Nygren M (1998) Oxidation kinetics of small nickel particles. J Appl Phys 85:1186–1191. https://doi.org/10.1063/1.369244

    Article  Google Scholar 

  20. Narender SS, Varma VVS, Srikar CS, Ruchitha J, Varma PA, Praveen BVS (2022) Nickel oxide nanoparticles: a brief review of their synthesis, characterization, and applications. Chem Eng Technol 45:397–409. https://doi.org/10.1002/ceat.202100442

    Article  CAS  Google Scholar 

  21. LaGrow AP, Ingham B, Cheong S et al (2012) Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. J Am Chem Soc 134:855–858. https://doi.org/10.1021/ja210209r

    Article  CAS  PubMed  Google Scholar 

  22. Song P, Wen D, Guo ZX, Korakianitis T (2008) Oxidation investigation of nickel nanoparticles. Phys Chem Chem Phys 10:5057–5065. https://doi.org/10.1039/B800672E

    Article  CAS  PubMed  Google Scholar 

  23. Zou C, Shin YK, van Duin ACT, Fang H, Liu Z-K (2015) Molecular dynamics simulations of the effects of vacancies on nickel self-diffusion, oxygen diffusion and oxidation initiation in nickel, using the ReaxFF reactive force field. Acta Mater 83:102–112. https://doi.org/10.1016/j.actamat.2014.09.047

    Article  CAS  Google Scholar 

  24. Senftle TP, Hong S, Islam MM et al (2016) The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput Mater 2:15011. https://doi.org/10.1038/npjcompumats.2015.11

    Article  CAS  Google Scholar 

  25. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409. https://doi.org/10.1021/jp004368u

    Article  CAS  Google Scholar 

  26. Zhang X, Duan Y, Dai X et al (2020) Atomistic origin of amorphous-structure-promoted oxidation of silicon. Appl Surf Sci 504:144437. https://doi.org/10.1016/j.apsusc.2019.144437

    Article  CAS  Google Scholar 

  27. Zheng P, Zhang X, Duan Y, Yan M, Chapman R, Jiang Y, Li H (2020) Oxidation of graphene with variable defects: alternately symmetrical escape and self-restructuring of carbon rings. Nanoscale 12:10140–10148. https://doi.org/10.1039/C9NR10613H

    Article  CAS  PubMed  Google Scholar 

  28. Zheng P, Zhang L, Zhang X, Ma Y, Jiang Y, Li H (2022) Parallel-self-assembling stack, center-capture effect, and reactivity-enhancing effect of N-layer (N = 1, 2, 3) Cyclo[18]carbon. ACS Nano 16:21345–21355. https://doi.org/10.1021/acsnano.2c09611

    Article  CAS  PubMed  Google Scholar 

  29. Zheng P, Zhang L, Zhang X, Ma Y, Qian J, Jiang Y, Li H (2021) Hydrogenation of TiO2 nanosheets and nanoparticles: typical reduction stages and orientation-related anisotropic disorder. J Mater Chem A 9:22603–22614. https://doi.org/10.1039/D1TA05774J

    Article  CAS  Google Scholar 

  30. Qian J, Zheng P, Ma Y et al (2023) Formation and growth kinetics of the initial amorphous oxide film on the aluminum melt: a ReaxFF molecular dynamics simulation. Comput Mater Sci 220:112035. https://doi.org/10.1016/j.commatsci.2023.112035

    Article  CAS  Google Scholar 

  31. Amiri N, Behnejad H (2016) Oxidation of nickel surfaces through the energetic impacts of oxygen molecules: reactive molecular dynamics simulations. J Chem Phys 144:144705. https://doi.org/10.1063/1.4945421

    Article  CAS  PubMed  Google Scholar 

  32. Ma Y, Zhang D, Zheng P, Qian J, Wang Y, Jiang Y, Li H (2022) Oxidation of nickel with groove defects: cation vacancies expansion mechanism and directional layer-by-layer oxidation. Appl Surf Sci 593:153384. https://doi.org/10.1016/j.apsusc.2022.153384

    Article  CAS  Google Scholar 

  33. Ma Y, Zhang D, Zheng P, Wu W, Li H (2023) Applied-strain-promoted oxidation of Nickel: insights from ReaxFF molecular dynamic simulation. Comput Mater Sci 218:111992. https://doi.org/10.1016/j.commatsci.2022.111992

    Article  CAS  Google Scholar 

  34. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  35. Liu J, Wang Q, Qi Y (2019) Atomistic simulation of the formation and fracture of oxide bifilms in cast aluminum. Acta Mater 164:673–682. https://doi.org/10.1016/j.actamat.2018.11.008

    Article  CAS  Google Scholar 

  36. Sun Y, Zuo X, Sankaranarayanan SKRS, Peng S, Narayanan B, Kamath G (2017) Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science 356:303–307. https://doi.org/10.1126/science.aaf6792

    Article  CAS  PubMed  Google Scholar 

  37. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  38. Ai L, Zhou Y, Huang H, Lv Y, Chen M (2018) A reactive force field molecular dynamics simulation of nickel oxidation in supercritical water. J Supercrit Fluids 133:421–428. https://doi.org/10.1016/j.supflu.2017.10.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (NNSFC) (Grant No. 52171038) and also acknowledge the financial supports from the Key Research and Development Program of Shandong Province (Grant No. 2021ZLGX01). This work is also supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau (2020GXRC019) as well as the new material demonstration platform construction project from the Ministry of Industry and Information Technology (2020-370104-34-03-043952-01-11).

Author information

Authors and Affiliations

Authors

Contributions

ZW: investigation methodology, synthesis, and writing original draft. YM: investigation and synthesis. PZ: methodology. JQ: methodology. MF: investigation. YJ: project administration and supervision. WW: writing-review and supervision. HL: writing-review, project administration and supervision.

Corresponding authors

Correspondence to Yanyan Jiang, Weikang Wu or Hui Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any experiments involving human tissue.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, Y., Zheng, P. et al. ReaxFF molecular dynamics study of early oxidation of nickel nanoparticles. J Mater Sci 59, 5414–5425 (2024). https://doi.org/10.1007/s10853-023-09136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09136-5

Navigation