Skip to main content
Log in

Design and synthesis of core–shell porous magnetic nanospindle@poly(3,4-ethylenedioxythiophene)/MXene composite for efficient microwave absorption

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of advanced microwave absorbing materials with high absorption intensity and broad bandwidth is crucial for applications in electromagnetic interference shielding and stealth technology. In this study, we propose a novel hybrid material composed of porous magnetic nanospindle@poly(3,4-ethylenedioxythiophene) (PEDOT)/MXene (Fe@P/MX), designed to achieve superior microwave absorption performance through impedance matching and electromagnetic loss mechanisms. The conductive PEDOT and MXene, combined with magnetic nanospindles, enable impedance matching and promote dielectric loss, which ultimately enhances microwave absorption. Additionally, the hybrid material contains multiple interfaces that induce interface polarization and strong absorption of electromagnetic waves. Electromagnetic parameters of composites can be easily modulated by adjusting the content of PEDOT, thereby optimizing microwave absorption performance. The results demonstrate improved performance compared to existing materials, with the minimum reflection loss of − 60.6 dB at 17.0 GHz under the thickness of 1.6 mm. Besides, the effective absorption bandwidth extends to 5.4 GHz under the thickness of 1.9 mm. This core–shell hybrid material has significant potential for practical applications requiring efficient microwave absorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the fundings of this study are available from the corresponding author upon reasonable request.

References

  1. Wongkasem N (2021) Electromagnetic pollution alert: microwave radiation and absorption in human organs and tissues. Electromagn Biol Med 40(2):236–253

    CAS  Google Scholar 

  2. Xia Y, Gao W, Gao C (2022) A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv Func Mater 32(42):2204591

    CAS  Google Scholar 

  3. Guo Y, Ruan K, Wang G, Gu J (2023) Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull 68(11):1195–1212

    CAS  Google Scholar 

  4. Wu Y, Chen L, Han Y et al (2023) Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res 16(5):7801–7809

    CAS  Google Scholar 

  5. Tong G, Wu W, Guan J, Qian H, Yuan J, Li W (2011) Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J Alloy Compd 509(11):4320–4326

    CAS  Google Scholar 

  6. Wu Z, Cheng H-W, Jin C et al (2022) Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater 34(11):2107538

    CAS  Google Scholar 

  7. Wang J, Liu L, Jiao S, Ma K, Lv J, Yang J (2020) Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv Func Mater 30(45):2002595

    CAS  Google Scholar 

  8. Ni X, Hu X, Zhou S, Sun C, Bai X, Chen P (2011) Synthesis and microwave absorbing properties of poly(3,4-ethylenedioxythiophene) (PEDOT) microspheres. Polym Adv Technol 22(5):532–537

    CAS  Google Scholar 

  9. Zhou W, Hu X, Sun C, Yan J, Zhou S, Chen P (2014) Microwave absorbing properties of Fe3O4–poly(3, 4-ethylenedioxythiophene) hybrids in low-frequency band. Polym Adv Technol 25(1):83–88

    CAS  Google Scholar 

  10. Qiao M, Tian Y, Wang J et al (2022) Magnetic-field-induced vapor-phase polymerization to achieve PEDOT-decorated porous Fe3O4 particles as excellent microwave absorbers. Ind Eng Chem Res 61(35):13072–13082

    CAS  Google Scholar 

  11. Yan L, Wang X, Zhao S et al (2017) Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces 9(12):11116–11125

    CAS  Google Scholar 

  12. Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C (2022) MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 6(6):389–404

    Google Scholar 

  13. Zhou X, Wen J, Wang Z, Ma X, Wu H (2022) Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J Mater Sci Technol 115:148–155

    CAS  Google Scholar 

  14. Dai Y, Wu X, Liu Z, Zhang H-B, Yu Z-Z (2020) Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos B Eng 200:108263

    CAS  Google Scholar 

  15. Li X, Wen C, Yang L et al (2021) MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 175:509–518

    CAS  Google Scholar 

  16. Pan F, Yu L, Xiang Z et al (2021) Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172:506–515

    CAS  Google Scholar 

  17. Yuan M, Zhou M, Fu H (2021) Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Compos B Eng 224:109178

    CAS  Google Scholar 

  18. Wu S, Liu H, Wang Q, Yin X, Hou L (2023) Hydrogen bonded interface self-assembled ZnFe2O4@PDA@Ti3C2TX MXene composites with three-dimensional core/shell/shell structure for ultrathin high-performance electromagnetic wave absorbers. J Alloy Compd 945:169372

    CAS  Google Scholar 

  19. Zhang Y, Ruan K, Zhou K, Gu J (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35(16):2211642

    CAS  Google Scholar 

  20. Zhang P, Sun N, Soomro RA, Yue S, Zhu Q, Xu B (2021) Interface-engineered Fe3O4/MXene heterostructures for enhanced lithium-ion storage. ACS Appl Energy Mater 4(10):11844–11853

    CAS  Google Scholar 

  21. Xu W, Wang M, Li Z et al (2017) Chemical transformation of colloidal nanostructures with morphological preservation by surface-protection with capping ligands. Nano Lett 17(4):2713–2718

    CAS  Google Scholar 

  22. Qunyan L, Luyao S, Qifei C, Yunlu Z (2022) Synthesis and laccase immobilization of magnetic Fe3O4@SiO2@mesoporous SiO2 hollow microspheres. Chem Ind Eng Prog 41(10):5494–5500

    Google Scholar 

  23. Wang J, Jia Z, Liu X et al (2021) Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Letters 13(1):175

    CAS  Google Scholar 

  24. Wen C, Li X, Zhang R et al (2022) High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1):1150–1159

    CAS  Google Scholar 

  25. Zhou W, Hu X, Bai X et al (2011) Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–Poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl Mater Interfaces 3(10):3839–3845

    CAS  Google Scholar 

  26. Liu P, Yao Z, Ng VMH, Zhou J, Kong LB, Yue K (2018) Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos A Appl Sci Manuf 115:371–382

    CAS  Google Scholar 

  27. Li Y, Gao Y, Fan B, Guan L, Zhao B, Zhang R (2021) Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with Fe3O4 nanoparticle decoration via a solvothermal method. The J Phys Chem C 125(36):19914–19924

    CAS  Google Scholar 

  28. Sui J, Li W, Pan Q (2015) Vesicle-templating PEDOT hollow microspheres and their electrocatalytic activity towards ascorbic acid. J Func Polym 28(4):380–385

    CAS  Google Scholar 

  29. Li N, Huang G-W, Li Y-Q et al (2017) Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 9(3):2973–2983

    CAS  Google Scholar 

  30. Zhong S, Yu M, Liang X, Dong Y, Liu J, Wang C (2022) Microwave absorption performance and multiple loss mechanisms of three-dimensional porous Fe4N@Fe3O4@Fe/carbon composite. J Mater Sci 57:16649–16664. https://doi.org/10.1007/s10853-022-07663-1

    Article  CAS  Google Scholar 

  31. Han Y, He M, Hu J et al (2023) Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res 16(1):1773–1778

    CAS  Google Scholar 

  32. Liu P, Gao S, Wang Y, Huang Y, Zhou F, Liu P (2021) Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173:655–666

    CAS  Google Scholar 

  33. Ling X, Wang K, Zhang W, Wu Y, Jin Q, Zhang D (2022) Bio-inspired, bimetal ZIF-derived hollow carbon/MXene microstructure aim for superior microwave absorption. J Colloid Interface Sci 625:317–327

    CAS  Google Scholar 

  34. Wang K, Chu W, Li H, Chen Y, Cai Y, Liu H (2021) Ferromagnetic Ti3CNCl2-decorated RGO aerogel: from 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J Coll Interface Sci 604:402–414

    CAS  Google Scholar 

  35. Tao J, Zhou J, Yao Z et al (2021) Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172:542–555

    CAS  Google Scholar 

  36. Ma H, Wang Y, Wang B et al (2023) Synthetic 3D flower-like 1T/2H MoS2@CoFe2O4 composites with enhanced microwave absorption performances. J Mater Sci 58(3):1183–1199. https://doi.org/10.1007/s10853-022-08051-5

    Article  CAS  Google Scholar 

  37. Meng X, Liu Y, Han G, Yang W, Yu Y (2020) Three-dimensional (Fe3O4/ZnO)@ C Double-core@ shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 162:356–364

    CAS  Google Scholar 

  38. Wang X, Pan F, Xiang Z et al (2020) Magnetic vortex core-shell Fe3O4@ C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    CAS  Google Scholar 

  39. Ding J, Cheng L (2021) Core-shell Fe3O4@SiO2@PANI composite: preparation, characterization, and applications in microwave absorption. J Alloy Compd 881:160574

    CAS  Google Scholar 

  40. Tong Z, Liao Z, Liu Y et al (2021) Hierarchical Fe3O4/Fe@ C@ MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 179:646–654

    CAS  Google Scholar 

  41. Meng X, Lei W, Yang W, Liu Y, Yu Y (2021) Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance. J Coll Interface Sci 600:382–389

    CAS  Google Scholar 

  42. Liu X, Zhao X, Yan J, Huang Y, Li T, Liu P (2021) Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon 178:273–284

    CAS  Google Scholar 

  43. Yang Z, Li M, Zhang Y et al (2020) Constructing uniform Fe3O4@C@MnO2 microspheres with yolk-shell interior toward enhancement in microwave absorption. J Alloy Compd 817:152795

    CAS  Google Scholar 

  44. Gao S, Zhang Y, He J et al (2023) Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram Int 49(11):17554–17565

    CAS  Google Scholar 

  45. Ma M, Li W, Tong Z et al (2020) Facile synthesis of the one-dimensional flower-like yolk-shell Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption. J Alloy Compd 843:155199

    CAS  Google Scholar 

  46. Li J, Ji H, Xu Y, Zhang J, Yan Y (2020) Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. J Market Res 9(1):762–772

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Top Young Talents of Ten Thousand Talents Plan, National Natural Science Foundation of China (51971133, 51902200, 52072241, and 62375186), the Shanghai Science and Technology Committee (22511100400, 19JC1410400, 19ZR1425100).

Author information

Authors and Affiliations

Authors

Contributions

YZ: Data curation, Investigation, Methodology, Writing—original draft, Visualization; XL: Formal analysis, Writing—review& editing; QD: Formal analysis, Visualization; QL: Conceptualization, Supervision; YW: Funding acquisition, Resources; QJ: Funding acquisition, Resources; WZ: Conceptualization, Funding acquisition, Supervision; Writing—review& editing.

Corresponding authors

Correspondence to Yu Wu or Wang Zhang.

Ethics declarations

Conflict of interest

We declare that there is not any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

There are no human subjects in this article.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1437 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ling, X., Dong, Q. et al. Design and synthesis of core–shell porous magnetic nanospindle@poly(3,4-ethylenedioxythiophene)/MXene composite for efficient microwave absorption. J Mater Sci 58, 15100–15115 (2023). https://doi.org/10.1007/s10853-023-08957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08957-8

Navigation