Skip to main content
Log in

In situ forming aldehyde-modified xanthan/gelatin hydrogel for tissue engineering applications: synthesis, characterization, and optimization

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Injectable hydrogels have attracted considerable attention in regenerative medicine since their controllable properties. However, there are quite a few challenges in regulating an ideal hydrogel’s features for target tissue; overcoming them needs reliable fabrication techniques. In the present work, a novel in situ forming hydrogel based on aldehyde-modified xanthan gum (AXG) and gelatin (Gel) has been developed by taking advantage of Schiff’s base reaction and optimized for the tissue engineering applications. First, the AXG with three different oxidation degrees has been successfully synthesized using sodium periodate. Later on, AXG and Gel were blended with different volume ratios. The prepared scaffolds were characterized by FTIR, SEM, rheometer, and compression analysis. In addition, the hydrogels gelation time, injectability, self-healing, and swelling ratios were studied. The results indicated that all hydrogels exhibited suitable morphological as well as physical characteristics for biomedical applications. Because of its high compression strength and modulus, high storage modulus, and suitable swelling behavior, the X1/G2 hydrogel sample was selected as the optimal scaffold. In vitro cell viability shows ≥ 90% cell viability, and MG-63 cells lingered at the surface of the hydrogel, indicating that hydrogels can provide a suitable substrate for cell viability and cell adhesion by in vitro cell culture assay. This study illustrated that the synthesized hydrogels could be reputable scaffolds for biomedical and tissue engineering applications; however, more studies are needed.

Graphical abstract

Novel polysaccharide-based hydrogels formed by Schiff’s base reaction of aldehyde and amine groups, displaying suitable physicomechanical and biological properties for biomedical and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kim Y-M, Potta T, Park K-H, Song S-C (2017) Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs. Biomaterials 112:248–256. https://doi.org/10.1016/j.biomaterials.2016.10.025

    Article  CAS  Google Scholar 

  2. Han YL, Yang Y, Liu S, Wu J, Chen Y, Lu TJ, Xu F (2013) Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5(3):035004. https://doi.org/10.1088/1758-5082/5/3/035004

    Article  CAS  Google Scholar 

  3. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, Osada Y, Chen YM (2015) Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Func Mater 25(9):1352–1359. https://doi.org/10.1002/adfm.201401502

    Article  CAS  Google Scholar 

  4. Zheng B-D, Ye J, Yang Y-C, Huang Y-Y, Xiao M-T (2022) Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr Polym 275:118770. https://doi.org/10.1016/j.carbpol.2021.118770

    Article  CAS  Google Scholar 

  5. Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X (2018) Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohyd Polym 186:54–63. https://doi.org/10.1016/j.carbpol.2018.01.025

    Article  CAS  Google Scholar 

  6. Khodadadi Yazdia M, Zarrintaj P, Khodadadi A et al (2021) Polysaccharide-based electroconductive hydrogels: Structure, properties and applications in biomedical engineering. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118998

    Article  Google Scholar 

  7. Mo C, Li X, Chen Y (2021) Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 42(10):2100025. https://doi.org/10.1002/marc.202100025

    Article  CAS  Google Scholar 

  8. Hassler RA, Doherty DH (1990) Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prog 6(3):182–187. https://doi.org/10.1021/bp00003a003

    Article  CAS  Google Scholar 

  9. Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohyd Polym 180:128–144. https://doi.org/10.1016/j.carbpol.2017.10.009

    Article  CAS  Google Scholar 

  10. Zhong L, Oostrom M, Truex MJ, Vermeu VR, Szecsody JE (2013) Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater 244:160–170. https://doi.org/10.1016/j.jhazmat.2012.11.028

    Article  CAS  Google Scholar 

  11. Petri DF (2015) Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci 132(23):1548. https://doi.org/10.1002/app.42035

    Article  CAS  Google Scholar 

  12. Guo J, Gea L, Li X, Mu C, Li D (2014) Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids 39:243–250. https://doi.org/10.1016/j.foodhyd.2014.01.026

    Article  CAS  Google Scholar 

  13. Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohyd Polym 67(3):296–304. https://doi.org/10.1016/j.carbpol.2006.05.025

    Article  CAS  Google Scholar 

  14. Wei Z, Gerecht S (2018) A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 185:86–96. https://doi.org/10.1016/j.biomaterials.2018.09.003

    Article  CAS  Google Scholar 

  15. Ge L, Xu Y, Li X, Yuan L, Tan H, Li D, Mu C (2018) Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustain Chem Eng 6(7):9153–9166. https://doi.org/10.1021/acssuschemeng.8b01482

    Article  CAS  Google Scholar 

  16. Salazar G.M., Sanoh NC, and Penaloza DJP (2019) Synthesis and characterization of a novel polysaccharide-based self-healing hydrogel. KIMIKA, 29(2), 44–48. Available from https://kimika.pfcs.org.ph/index.php/kimika/article/view/264

  17. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339. https://doi.org/10.1002/jctb.3970

    Article  CAS  Google Scholar 

  18. Vahedi M, Barzin J, Shokrolahi F, Shorollahi P (2018) Self-healing, injectable gelatin hydrogels cross-linked by dynamic schiff base linkages support cell adhesion and sustained release of antibacterial drugs. Macromol Mater Eng 303(9):1800200. https://doi.org/10.1002/mame.201800200

    Article  CAS  Google Scholar 

  19. Das S, Dalei G (2023) In situ forming dialdehyde xanthan gum-gelatin Schiff-base hydrogels as potent controlled release fertilizers. Sci Total Environ 2023:162660–162716. https://doi.org/10.1016/j.scitotenv.2023.162660

    Article  CAS  Google Scholar 

  20. Khorshidi S, Karkhaneh A, Bonakdar S, Omidian M (2020) High-strength functionalized pectin/fibroin hydrogel with tunable properties: a structure–property relationship study. J Appl Polym Sci 137(28):48859. https://doi.org/10.1002/app.48859

    Article  CAS  Google Scholar 

  21. Yao Y, Wang P, Li X et al (2020) A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold. Acta Biomater 111:197–207. https://doi.org/10.1016/j.actbio.2020.05.007

    Article  CAS  Google Scholar 

  22. Han Y, Zeng Q, Li H, Chang J (2013) The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 9(11):9107–9117. https://doi.org/10.1016/j.actbio.2013.06.022

    Article  CAS  Google Scholar 

  23. Standardization., IOf (1992) ISO/EN 10993‐5: Biological evaluation of medical devices. Part 5. Test for cytotoxicity: In Vitro Methods. 8.2. Tests on Extracts.

  24. Zhang S, Huang D, Lin H, Xiao Y, Zhang X (2020) Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromol 21(6):2400–2408. https://doi.org/10.1021/acs.biomac.0c00345

    Article  CAS  Google Scholar 

  25. Basu S, Pacelli S, Paul A (2020) Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 105:159–169. https://doi.org/10.1016/j.actbio.2020.01.021

    Article  CAS  Google Scholar 

  26. Chena H, Cheng J, Ran L et al (2018) An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohyd Polym 201:522–531. https://doi.org/10.1016/j.carbpol.2018.08.090

    Article  CAS  Google Scholar 

  27. Xu J, Liu Y, Hsu S-h (2019) Hydrogels based on Schiff base linkages for biomedical applications. Molecules 24(16):3005. https://doi.org/10.3390/molecules24163005

    Article  CAS  Google Scholar 

  28. Emami Z, Ehsani M, Zandi M, Foudazi R (2018) Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohyd Polym 198:509–517. https://doi.org/10.1016/j.carbpol.2018.06.080

    Article  CAS  Google Scholar 

  29. Peivandi A, Jackson K, He L et al (2021) Inducing microscale structural order in phage nanofilament hydrogels with globular proteins. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c01112

    Article  Google Scholar 

  30. Majchera MJ, Babar A, Lofts A et al (2021) In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Controll Release 330:738–752. https://doi.org/10.1016/j.jconrel.2020.12.050

    Article  CAS  Google Scholar 

  31. Khorshidi S, Karkhaneh A (2016) A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications. Mater Lett 164:468–471. https://doi.org/10.1016/j.matlet.2015.11.041

    Article  CAS  Google Scholar 

  32. Qian L (2018) Cellulose-based composite hydrogels: preparation, structures, and applications, in Cellulose-Based Hydrogels. Springer International Publishing AG New York. p. 1–50. doi: https://doi.org/10.1007/978-3-319-76573-0_23-1

  33. Ngwabebhoh FA, Zandraa O, Patwa R, Saha N, Capakova Z, Saha P (2021) Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. Int J Biol Macromol 167:1468–1478. https://doi.org/10.1016/j.ijbiomac.2020.11.100

    Article  CAS  Google Scholar 

  34. Tao Y, Liu S, Zhanf Y, Chi Z, Xu J (2018) A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polym Chem 9(7):878–884. https://doi.org/10.1039/C7PY02108A

    Article  CAS  Google Scholar 

  35. Iftime MM, Morariu S, Marin L (2017) Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohyd Polym 165:39–50. https://doi.org/10.1016/j.carbpol.2017.02.027

    Article  CAS  Google Scholar 

  36. Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJA, Alblas J (2011) Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A 17(19–20):2473–2486. https://doi.org/10.1089/ten.tea.2011.0001

    Article  CAS  Google Scholar 

  37. Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds: Med. Tissue Eng.—Cells Biomater, in: Regen, InTechOpen : p. 569–588. https://doi.org/10.5772/21983

  38. France KJD, Xu F, Hoare T (2018) Structured macroporous hydrogels: Progress, challenges, and opportunities. Adv Healthcare Mater 7(1):1700927. https://doi.org/10.1002/adhm.201700927

    Article  CAS  Google Scholar 

  39. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohyd Polym 92(2):1091–1099. https://doi.org/10.1016/j.carbpol.2012.10.062

    Article  CAS  Google Scholar 

  40. Ward D (2021) The development of novel hydrogel composites for use in bone tissue engineering Lancaster University (United Kingdom) 28447705. Available from https://www.proquest.com/openview/243ef9ce3d46e77ea09ead3b05db2162/1?pq-origsite=gscholar&cbl=2026366&diss=y

  41. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  Google Scholar 

  42. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  43. Madden LR, Mortisen DJ, Sussman EM, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci 107(34):15211–15216. https://doi.org/10.1073/pnas.1006442107

    Article  Google Scholar 

  44. Oliviero O, Ventre M, Netti P (2012) Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta Biomater 8(9):3294–3301. https://doi.org/10.1016/j.actbio.2012.05.019

    Article  CAS  Google Scholar 

  45. Artel A, Mehdizadeh H, Chiu Y-C, Brey EM, Cinar A (2011) An agent-based model for the investigation of neovascularization within porous scaffolds. Tissue Eng Part A 17(17–18):2133–2141. https://doi.org/10.1089/ten.tea.2010.0571

    Article  CAS  Google Scholar 

  46. Jang HY, Zhang K, Chon BH, Choi H-J (2015) Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J Ind Eng Chem 21:741–745. https://doi.org/10.1016/j.jiec.2014.04.005

    Article  CAS  Google Scholar 

  47. Yan S, Wang T, Feng L et al (2014) Injectable in situ self-cross-linking hydrogels based on poly (L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromol 15(12):4495–4508. https://doi.org/10.1021/bm501313t

    Article  CAS  Google Scholar 

  48. Tan H, Li H, Rubin JP, Marra KG (2011) Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen Med 5(10):790–797. https://doi.org/10.1002/term.378

    Article  CAS  Google Scholar 

  49. Qu J, Zhao X, Ma XP, Guo B (2017) pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 58:168–180. https://doi.org/10.1016/j.actbio.2017.06.001

    Article  CAS  Google Scholar 

  50. Bittner SM, Pearce HA, Hogan KJ et al (2021) Swelling behaviors of 3D printed hydrogel and hydrogel-microcarrier composite scaffolds. Tissue Eng Part A 27(11–12):665–678. https://doi.org/10.1089/ten.tea.2020.0377

    Article  CAS  Google Scholar 

  51. Gupta V, Singh AK (2018) Stress relaxation at a gelatin hydrogel–glass interface in direct shear sliding. Mod Phys Lett B 32(02):1750345. https://doi.org/10.1142/S0217984917503456

    Article  CAS  Google Scholar 

  52. Caccavo D, Cascone S, Poto S, Lamberti G, Barba AA (2017) Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests. Carbohyd Polym 167:136–144. https://doi.org/10.1016/j.carbpol.2017.03.027

    Article  CAS  Google Scholar 

  53. Hanna DH, Lotfy VF, Basta AH, Saad GR (2020) Comparative evaluation for controlling release of niacin from protein-and cellulose-chitosan based hydrogels. Int J Biol Macromol 150:228–237. https://doi.org/10.1016/j.ijbiomac.2020.02.056

    Article  CAS  Google Scholar 

  54. Vedadghavami A, Minooei F, Mohammadi MH et al (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63. https://doi.org/10.1016/j.actbio.2017.07.028

    Article  CAS  Google Scholar 

  55. Liu C, Wu J, Ganet D et al (2020) The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J Biomed Mater Res B Appl Biomater 108(5):1814–1825. https://doi.org/10.1002/jbm.b.34524

    Article  CAS  Google Scholar 

  56. Wilson MA (2015) Structure and rheological properties of self-associating polymer networks San Diego State University. 3721326. Available from https://www.proquest.com/openview/38a7101f2f157a1dea91f7cff7c87cd2/1?pq-origsite=gscholar&cbl=18750

  57. Tommasi G, Perni S, Prokopovich P (2016) An injectable hydrogel as bone graft material with added antimicrobial properties. Tissue Eng Part A 22(11–12):862–872. https://doi.org/10.1089/ten.tea.2016.0014

    Article  CAS  Google Scholar 

  58. Giannoni P, Villa F, Cordazzo C et al (2016) Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater Sci 4(11):1691–1703. https://doi.org/10.1039/C6BM00478D

    Article  CAS  Google Scholar 

  59. Hu C, Hahn L, Yang M, Altmann A, Stahlhut P, Groll J, Luxenhofer R (2021) Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J Mater Sci 56(1):691–705. https://doi.org/10.1007/s10853-020-05190-5

    Article  CAS  Google Scholar 

  60. Chen MH, Wang LL, Chung JJ, Kim Y-H, Atluri P, Burdick JA (2017) Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater Sci Eng 3(12):3146–3160. https://doi.org/10.1021/acsbiomaterials.7b00734

    Article  CAS  Google Scholar 

  61. Suna Y, Nan D, Jin H, Qu X (2020) Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Testing 81:106283. https://doi.org/10.1016/j.polymertesting.2019.106283

    Article  CAS  Google Scholar 

  62. Saunders L, Ma PX (2019) Self-healing supramolecular hydrogels for tissue engineering applications. Macromol Biosci 19(1):1800313. https://doi.org/10.1002/mabi.201800313

    Article  CAS  Google Scholar 

  63. Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27(25):3717–3736. https://doi.org/10.1002/adma.201501558

    Article  CAS  Google Scholar 

  64. Rosales AM, Anseth KS (2016) The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1(2):1–15. https://doi.org/10.1038/natrevmats.2015.12

    Article  CAS  Google Scholar 

  65. Adzima BJ, Kloxin CJ, Bowman CN (2010) Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv Mater 22(25):2784–2787. https://doi.org/10.1002/adma.200904138

    Article  CAS  Google Scholar 

  66. Xia NN, Xiong XM, Rong MZ, Zhang MQ, Kong F (2017) Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl Mater Interfaces 9(42):37300–37309. https://doi.org/10.1021/acsami.7b11230

    Article  CAS  Google Scholar 

  67. Fairbanks BD, Singh SP, Bowman CN, Anseth KS (2011) Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44(8):2444–2450. https://doi.org/10.1021/ma200202w

    Article  CAS  Google Scholar 

  68. Quan L, Xin Y, Wu X, Ao Q (2022) Mechanism of self-healing hydrogels and application in tissue engineering. Polymers 14(11):2184. https://doi.org/10.3390/polym14112184

    Article  CAS  Google Scholar 

  69. Billiau A, Edy VG, Heremans H, Damme JV, Desmyter J, Georgiades JA, Somer PD (1977) Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 12(1):11–15. https://doi.org/10.1128/AAC.12.1.11

    Article  CAS  Google Scholar 

  70. Czekanska EM, Stoddart MJ, Richards RG, Hayes JS (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 24(4):1–17. https://doi.org/10.22203/ecm.v024a01

    Article  CAS  Google Scholar 

  71. Jahan K, Manickam G, Tabrizian M, Murshed M (2020) In vitro and in vivo investigation of osteogenic properties of self-contained phosphate-releasing injectable purine-crosslinked chitosan-hydroxyapatite constructs. Sci Rep 10(1):1–17. https://doi.org/10.1038/s41598-020-67886-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by a grant from Iran National Science Foundation (INSF) (no. 4013250) which is greatly appreciated. The authors would also like to warmly appreciate Dr. Sajedeh Khorshodi, Dr. Reza Karimi, Mr. Amir Hossein Rasooli, and Mr. Yaghoub shavehei from the Amirkabir University of Technology for their scientific consults. Also, the authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

MA was involved in experimental design, carrying out measurements and manuscript composition. RI took part in conceptualization, supervision, project administration, validation, funding acquisition, writing—review & editing. MH was involved in conceptualization, supervision, review & editing.

Corresponding author

Correspondence to Rana Imani.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajanzadeh, M.S., Imani, R. & Nazarpak, M.H. In situ forming aldehyde-modified xanthan/gelatin hydrogel for tissue engineering applications: synthesis, characterization, and optimization. J Mater Sci 58, 14187–14206 (2023). https://doi.org/10.1007/s10853-023-08878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08878-6

Navigation