Skip to main content
Log in

The impact of effective pore percentage on CH4/N2 separation in coal-based activated carbon

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The efficient separation of CH4/N2 using activated carbon depends on the strict regulation of carbon pore structure. However, the relationship between pore structure and separation performance remains inadequately explored in the literature. This study employed a sample set comprising 38 coal-based granular activated carbons with diverse pore structural parameters to investigate the impact of pore size distribution on CH4/N2 separation using advanced statistical methods. Through Pearson’s correlation analysis, this study reveals that the effective pores for CH4/N2 separation in coal-based activated carbon are those with diameters less than 1 nm, with the optimal pore size range being 0.4–0.7 nm. A novel pore structural parameter, effective pore percentage, was proposed, which exhibits a stronger correlation to separation performance and predicts the separation performance of the activated carbon more accurately than commonly used parameters. Ridge regression analysis revealed that a high proportion of effective pores (< 1 nm) generally results in higher separation efficiency, while an excessively high proportion of larger pores (> 1 nm) can diminish the separation performance of CH4/N2. This study has important implications for investigating the separation mechanism of coal-based activated carbon for CH4/N2 and for developing efficient coal-based activated carbon for purifying coalbed gas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Govindarajan AMSK (2020) Methane gas production from a coal bed methane reservoir: an overview. J Oil Gas Coal Eng 5:39–46

    Google Scholar 

  2. Zhang J, Qu S, Li L, Wang P, Li X, Che Y, Li X (2018) Preparation of carbon molecular sieves used for CH4/N2 separation. J Chem Eng Data 63:1737–1744. https://doi.org/10.1021/acs.jced.8b00048

    Article  CAS  Google Scholar 

  3. Zheng Y, Li Q, Yuan C, Tao Q, Zhao Y, Zhang G, Liu J (2019) Influence of temperature on adsorption selectivity: coal-based activated carbon for CH4 enrichment from coal mine methane. Powder Technol 347:42–49. https://doi.org/10.1016/j.powtec.2019.02.042

    Article  CAS  Google Scholar 

  4. Hu G, Zhao Q, Tao L, Xiao P, Webley PA, Li KG (2021) Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon. Chem Eng Sci 229:116152. https://doi.org/10.1016/j.ces.2020.116152

    Article  CAS  Google Scholar 

  5. Liu C, Zhou Y, Sun Y, Su W, Zhou L (2011) Enrichment of coal-bed methane by PSA complemented with CO2 displacement. AIChE J 57:645–654. https://doi.org/10.1002/aic.12305

    Article  CAS  Google Scholar 

  6. Gu M, Zhang B, Qi Z, Liu Z, Duan S, Du X, Xian X (2015) Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption. Sep Purif Technol 146:213–218. https://doi.org/10.1016/j.seppur.2015.03.051

    Article  CAS  Google Scholar 

  7. Olajossy A, Gawdzik A, Budner Z, Dula J (2003) Methane separation from coal mine methane gas by vacuum pressure swing adsorption. Chem Eng Res Des 81:474–482. https://doi.org/10.1205/026387603765173736

    Article  CAS  Google Scholar 

  8. Yi H, Li F, Ning P, Tang X, Peng J, Li Y, Deng H (2013) Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem Eng J 215–216:635–642. https://doi.org/10.1016/j.cej.2012.11.050

    Article  CAS  Google Scholar 

  9. Kennedy DA, Tezel FH (2018) Cation exchange modification of clinoptilolite-screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Micropor Mesopor Mat 262:235–250. https://doi.org/10.1016/j.micromeso.2017.11.054

    Article  CAS  Google Scholar 

  10. Avijegon G, Xiao G, Li G, May EF (2018) Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on zeolite 13X beads from 273 to 333K and pressures to 900KPa. Adsorption 24:381–392. https://doi.org/10.1007/s10450-018-9952-3

    Article  CAS  Google Scholar 

  11. Cavenati S, Grande CA, Rodrigues AE (2005) Layered pressure swing adsorption for methane recovery from CH4/CO2/N2 streams. Adsorption 11:549–554. https://doi.org/10.1007/s10450-005-5983-7

    Article  Google Scholar 

  12. Tang R, Dai Q, Liang W, Wu Y, Zhou X, Pan H, Li Z (2020) Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas. Chem Eng J 384:123388. https://doi.org/10.1016/j.cej.2019.123388

    Article  CAS  Google Scholar 

  13. Wang SM, Wu PC, Fu JW, Yang QY (2021) Heteroatom-doped porous carbon microspheres with ultramicropores for efficient CH4/N2 separation with ultra-high CH4 uptake. Sep Purif Technol 274:119121. https://doi.org/10.1016/j.seppur.2021.119121

    Article  CAS  Google Scholar 

  14. Liu F, Zhang Y, Zhang P, Xu M, Tan T, Wang J, Deng Q, Zhang L, Wan Y, Deng S (2020) Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture. Chem Eng J 399:125812. https://doi.org/10.1016/j.cej.2020.125812

    Article  CAS  Google Scholar 

  15. Yang Z, Ning H, Liu J, Meng Z, Li Y, Ju X, Chen Z (2020) Surface modification on semi-coke-based activated carbon for enhanced separation of CH4/N2. Chem Eng Res Des 161:312–321. https://doi.org/10.1016/j.cherd.2020.07.025

    Article  CAS  Google Scholar 

  16. Liu X, Li Q, Zhang G, Ma X, Zhu P, Li X (2022) Characterization of activated carbon precursors prepared by dry-air oxidant and its effects on the adsorptions of activated carbon. Fuel 31:123723. https://doi.org/10.1016/j.fuel.2022.123723

    Article  CAS  Google Scholar 

  17. Yang Z, Wang D, Meng Z, Li Y (2019) Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve. Sep Purif Technol 218:130–137. https://doi.org/10.1016/j.seppur.2019.02.048

    Article  CAS  Google Scholar 

  18. Qadir S, Gu Y, Ali S, Li D, Zhao S, Wang S, Xu H, Wang S (2022) A thermally stable isoquinoline based ultra-microporous metal-organic framework for CH4 separation from coal mine methane. Chem Eng J 428:131136. https://doi.org/10.1016/j.cej.2021.131136

    Article  CAS  Google Scholar 

  19. Li Y, Wang S, Wang B, Wang Y, Wei J (2020) Sustainable biomass glucose-derived porous carbon spheres with high nitrogen doping: as a promising adsorbent for CO2/CH4/N2 adsorptive separation. Nanomater Basel 10:174. https://doi.org/10.3390/nano10010174

    Article  CAS  Google Scholar 

  20. Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J (2019) Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2. Nanomater Basel 9:266. https://doi.org/10.3390/nano9020266

    Article  CAS  Google Scholar 

  21. Zhao GF, Bai P, Zhu HM, Yan RX, Liu XM, Yan ZF (2008) The modification of activated carbons and the pore structure effect on enrichment of coal-bed methane. Asia-Pac J Chem Eng 3:284–291. https://doi.org/10.1002/apj.147

    Article  CAS  Google Scholar 

  22. Zhang B, Huang Z, Liu P, Liu J, Gu M (2022) Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2. Korean J Chem Eng 39:724–735. https://doi.org/10.1007/s11814-021-0948-4

    Article  CAS  Google Scholar 

  23. Yuan D, Zheng Y, Li Q, Lin B, Zhang G, Liu J (2018) Effects of pore structure of prepared coal-based activated carbons on CH4 enrichment from low concentration gas by IAST method. Powder Technol 333:377–384. https://doi.org/10.1016/j.powtec.2018.04.045

    Article  CAS  Google Scholar 

  24. Hamyali H, Nosratinia F, Rashidi A, Ardjmand M (2022) Anthracite coal-derived activated carbon as an effectiveness adsorbent for superior gas adsorption and CO2/N2 and CO2/CH4 selectivity: experimental and DFT study. J Environ Chem Eng 10:107007. https://doi.org/10.1016/j.jece.2021.107007

    Article  CAS  Google Scholar 

  25. Chang M, Ren J, Yang Q, Liu D (2021) A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation. Chem Eng J 408:127294. https://doi.org/10.1016/j.cej.2020.127294

    Article  CAS  Google Scholar 

  26. Mohammadi M, Najafpour G, Mohamed A (2011) Production of carbon molecular sieves from palm shell through carbon deposition from methane. Chem Ind Chem Eng Q 17:525–533. https://doi.org/10.2298/CICEQ110506038M

    Article  CAS  Google Scholar 

  27. Cui X, Bustin RM, Dipple G (2004) Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83:293–303. https://doi.org/10.1016/j.fuel.2003.09.001

    Article  CAS  Google Scholar 

  28. Jasra RV, Choudary NV, Bhat SGT (1991) Separation of gases by pressure swin. Sep Sci Technol 26:885–930. https://doi.org/10.1080/01496399108050504

    Article  CAS  Google Scholar 

  29. Alonso-Vicario A, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Torrecilla-Soria J, Domínguez A (2010) Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Micropor Mesopor Mat 134:100–107. https://doi.org/10.1016/j.micromeso.2010.05.014

    Article  CAS  Google Scholar 

  30. Cai Z, Zhang Z, Jiang X (2022) Composition analysis and identification of glass products based on Pearson correlation analysis. Highlights Sci Eng Technol 22:174–186

    Article  Google Scholar 

  31. Yang Q, Kang Q, Huang Q, Cui Z, Bai Y, Wei H (2021) Linear correlation analysis of ammunition storage environment based on Pearson correlation analysis. J Phys Conf Ser 1948:012064. https://doi.org/10.1088/1742-6596/1948/1/012064

    Article  Google Scholar 

  32. Oghenekevwe Etaga H, Chibotu Ndubisi R, Lilian Oluebube N (2021) Effect of multicollinearity on variable selection in multiple regression. Sci J Appl Math Stat 9:141–153. https://doi.org/10.11648/j.sjams.20210906.12

    Article  Google Scholar 

  33. Rokem A, Kay K (2020) Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. Gigascience 9:1–12. https://doi.org/10.1093/gigascience/giaa133

    Article  Google Scholar 

  34. Abdulhafedh A (2022) Modeling vehicle crash frequency when multicollinearity exists in vehicle crash data: ridge regression versus ordinary least squares linear regression. OALib 9:1–17. https://doi.org/10.4236/oalib.1108873

    Article  Google Scholar 

  35. Wang FY, Zhu ZH, Massarotto P, Rudolph V (2007) Mass transfer in coal seams for CO2 sequestration. AIChE J 53:1028–1049. https://doi.org/10.1002/aic.11115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Science and Technology Commission Projects (grant nos. cstc2018jcyj-yszxX0005, and cstc2020yszx-jcyjX0008).

Author information

Authors and Affiliations

Authors

Contributions

RX and ZS participated in the design of the whole study; RX contributed to writing this manuscript and organizing all the experiments; XX and MG reviewed the final paper and made important suggestions and recommendations for paper; ZS contributed to analyzing the data and treatment of experimental samples.

Corresponding author

Correspondence to Zhenlong Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Pore structure characteristics of 38 coal-based AC samples.

Appendix 1 Pore structure characteristics of 38 coal-based AC samples.

Sample

SBET (m2 g−1)

Vt (cm3 g−1)

APD (nm)

α

Sample

SBET (m2 g−1)

Vt (cm3 g−1)

APD (nm)

α

A-1

123.81

0.07

2.10

1.04

A-20

788.80

0.40

2.04

1.31

A-2

280.76

0.12

1.72

1.75

A-21

1367.38

0.85

2.47

1.46

A-3

493.67

0.20

1.63

2.40

L-1

40.21

0.04

3.65

1.14

A-4

587.73

0.24

1.62

2.93

L-2

12.06

0.01

3.98

1.06

A-5

631.60

0.26

1.66

2.22

L-3

2.35

0.00

5.03

1.02

A-6

698.66

0.30

1.70

2.67

L-4

234.25

0.14

2.46

1.00

A-7

895.21

0.38

1.71

2.65

L-5

232.45

0.14

2.49

2.31

A-8

476.60

0.21

1.76

2.88

L-6

389.70

0.24

2.47

2.05

A-9

333.72

0.18

2.12

2.88

L-7

626.51

0.17

1.08

2.15

A-10

608.18

0.25

1.67

2.75

L-8

327.38

0.19

2.30

2.36

A-11

679.43

0.29

1.72

2.53

L-9

233.00

0.17

2.91

1.43

A-12

715.14

0.31

1.74

2.46

L-10

343.52

0.28

3.22

2.10

A-13

840.52

0.36

1.71

2.47

L-11

240.74

0.25

4.11

1.46

A-14

1211.74

0.57

1.88

2.16

L-12

462.09

0.25

2.20

3.18

A-15

738.88

0.32

1.73

2.40

L-13

508.85

0.40

3.12

2.52

A-16

1141.79

0.53

1.87

2.10

L14

444.88

0.32

2.91

2.32

A-17

999.34

0.45

1.82

2.03

L-15

512.86

0.42

3.26

2.26

A-18

554.00

0.27

1.97

1.98

L-16

516.26

0.29

2.22

2.96

A-19

1150.54

0.55

1.93

1.76

L-17

602.42

0.53

3.50

2.66

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Xian, X., Song, Z. et al. The impact of effective pore percentage on CH4/N2 separation in coal-based activated carbon. J Mater Sci 58, 13635–13648 (2023). https://doi.org/10.1007/s10853-023-08869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08869-7

Navigation