Skip to main content

Advertisement

Log in

CO2 hydrogenation to methane over Ni/ZrO2 and Ni/CeO2 catalysts: experimental and DFT studies

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, performance of ZrO2 and CeO2 supported Ni catalysts on CO2 hydrogenation reaction was investigated in continuous flow reactor. The results revealed that Ni/ZrO2 catalyst exhibited superior performance compared to Ni/CeO2, with a CO2 conversion rate of 71.84%, a CH4 formation rate of 21.03 mmol g−1 h−1, and excellent reaction stability at 400 °C. And the activation energy of Ni/ZrO2 was lower than that of Ni/CeO2. N2 adsorption–desorption, SEM, XRD, XPS, CO2-TPD and O2-TPO analysis results suggest that Ni/ZrO2 is a multi-stage pore material, which has slit holes formed by the accumulation of sheet-like particles, as well as a superior dispersion of Ni on ZrO2. Moreover, Ni/ZrO2 shows higher alkalinity and remarkable resistance to carbon accumulation. DFT calculations demonstrated that CO2 can be more easily adsorbed on ZrO2 surface, and one O-terminus of CO2 is closer to top sites of ZrO2, which is favorable for electron transfer and promotes the activation of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Van Vuuren DP, Stehfest E, Gernaat DEHJ, van den Berg M, Bijl DL, de Boer HS, Daioglou V, Doelman JC, Edelenbosch OY, Harmsen M, Hof AF, van Sluisveld MAE (2018) Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat Clim Change 8(5):391–397

    Article  Google Scholar 

  2. Lu Z-q, Wu C-g, Wu N-y, Lu H-l, Wang T, Xiao R, Liu H, Wu X-h (2022) Changes in natural gas hydrates in permafrost on the Qinghai–Tibet Plateau under the background of global warming and their impacts on carbon emissions. China Geology 5(3):1–35

    Article  Google Scholar 

  3. Guo J, Zhang Y-J, Zhang K-B (2018) The key sectors for energy conservation and carbon emissions reduction in China: evidence from the input-output method. J Clean Prod 179:180–190

    Article  Google Scholar 

  4. Vita A, Italiano C, Pino L, Frontera P, Ferraro M, Antonucci V (2018) Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation. Appl Catal B-Environ 226:384–395

    Article  CAS  Google Scholar 

  5. Carenco S, Sassoye C, Faustini M, Eloy P, Debecker DP, Bluhm H, Salmeron M (2016) The active state of supported ruthenium oxide nanoparticles during carbon dioxide methanation. J Phy Chem C 120(28):15354–15361

    Article  CAS  Google Scholar 

  6. Onishi N, Himeda Y (2022) Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coord Chem Rev 472:0010–8545

    Article  Google Scholar 

  7. Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X (2017) Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J Am Chem Soc 139(20):6827–6830

    Article  CAS  Google Scholar 

  8. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Directly converting CO2 into a gasoline fuel. Nat Commun 8(1):15174

    Article  Google Scholar 

  9. Sabatier P, Senderens JB (1902) Direct hydrogenation of carbon oxides in the presence of various split metals. C R Acad Sci Hebd Seances Acad Sci D 134:689

    Google Scholar 

  10. Liu MH, Chen HA, Chen CS, Wu JH, Wu HC, Yang CM (2019) Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO2 methanation. Nanoscale 11(43):20741–20753

    Article  CAS  Google Scholar 

  11. Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48(12):3193–3228

    Article  CAS  Google Scholar 

  12. Chen K, Li H, He L (2020) Advance and prospective on CO2 activation and transformation strategy. Chinese J Org Chem 40:2195–2207

    Article  CAS  Google Scholar 

  13. Yu W-Z, Fu X-P, Xu K, Ling C, Wang W-W, Jia C-J (2021) CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst. J Environ Chem Eng 9(4):2213–3437

    Article  Google Scholar 

  14. Daroughegi R, Meshkani F, Rezaei M (2017) Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni–Al2O3 catalysts prepared by ultrasound-assisted co-precipitation method. Int J Hydrogen Energy 42(22):15115–15125

    Article  CAS  Google Scholar 

  15. Stangeland K, Kalai DY, Li H, Yu ZK (2018) Active and stable Ni based catalysts and processes for biogas upgrading: the effect of temperature and initial methane concentration on CO2 methanation. Appl Energy 227:206–212

    Article  CAS  Google Scholar 

  16. Li W, Zhang A, Jiang X, Chen C, Liu Z, Song C, Guo X (2017) Low temperature CO2 methanation: ZIF-67-derived co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain Chem Eng 5(9):7824–7831

    Article  CAS  Google Scholar 

  17. Zhou G, Liu H, Xing Y, Xu S, Xie H, Xiong K (2018) CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: effect of structure. J CO2 Util 26:221–229

    Article  CAS  Google Scholar 

  18. Kim HY, Lee HM, Park J-N (2010) Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. J Phy Chem C 114(15):7128–7131

    Article  CAS  Google Scholar 

  19. Yang Y, Zhang J, Liu J, Wu D, Xiong B, Yang Y, Hua Z (2021) Nickel Nanoparticles Encapsulated in SSZ-13 Cage for Highly Efficient CO2 Hydrogenation. Energy Fuels 35(16):13240–13248

    Article  CAS  Google Scholar 

  20. De S, Zhang J, Luque R, Yan N (2016) Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ Sci 9(11):3314–3347

    Article  CAS  Google Scholar 

  21. Lv YC, EsmaeiliShahri E, Mahmoudi A, KeifiNaughabi R, Abbaspour S, Tayebee R (2023) Bioinspired nickel oxide nanoparticle as an efficient nanocarrier in the delivery of doxorubicin as an anti-bladder cancer drug. Inorg Chem Commun 152:110650

    Article  CAS  Google Scholar 

  22. Gao H, Tayebee R, Abdizadeh MF, Mansouri E, Latifnia M, Pourmojahed Z (2020) The efficient biogeneration of Ag and NiO nanoparticles from VPLE and a study of the anti-diabetic properties of the extract. RSC Adv 10(5):3005–3012

    Article  CAS  Google Scholar 

  23. Wei ZL, Abbaspour S, Tayebee R (2023) Nickel nanoparticles originated from Cressa leaf Extract in the preparation of a novel melem@Ni-HPA photocatalyst for the synthesis of some chromenes and a preliminary MTT assay on the anticancer activity of the nanocomposite. Polycycl Aromat Comp 43(1):552–571

    Article  CAS  Google Scholar 

  24. Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energy 37(7):5527–5531

    Article  CAS  Google Scholar 

  25. Hu F, Chen X, Tu Z, Lu Z-H, Feng G, Zhang R (2021) Graphene aerogel supported Ni for CO2 hydrogenation to methane. Ind Eng Chem Res 60(33):12235–12243

    Article  CAS  Google Scholar 

  26. Ashok J, Ang ML, Kawi S (2017) Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: influence of preparation methods. Catal Today 281:304–311

    Article  CAS  Google Scholar 

  27. Zhang Z, Zang Y, Gao F, Qu J, Gu J, Lin X (2022) Enhanced catalytic activity of CO2 hydrogenation to CO over sulfur-containing Ni/ZrO2 catalysts: support size effect. New J Chem 46(43):22332–22340

    Article  CAS  Google Scholar 

  28. Jia X, Zhang X, Rui N, Hu X, Liu C-j (2019) Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl Catal B-Environ 244:159–169

    Article  CAS  Google Scholar 

  29. Ganduglia-Pirovano MV, Sauer HAJ (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62(6):219–270

    Article  CAS  Google Scholar 

  30. Konstantin Pokrovski KTJ, Bell AT (2001) Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 17:4297–4303

    Article  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys rev B, Condens matter 54(16):11169–11186

    Article  CAS  Google Scholar 

  32. Korona T (2013) A coupled cluster treatment of intramonomer electron correlation within symmetry-adapted perturbation theory: benchmark calculations and a comparison with a density-functional theory description. Mol Phy 111(24):3705–3715

    Article  CAS  Google Scholar 

  33. Yang H, Geng X, Yang Y, Li Y-W, Wen X-D, Jiao H (2022) Mechanisms of CO2 hydrogenative conversion on supported Ni/ZrO2 catalyst. Appl Surf Sci 600:0169–4332

    Article  Google Scholar 

  34. Tang R, Ullah N, Hui Y, Li X, Li Z (2021) Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method. Mol Catal 508:2468–8231

    Google Scholar 

  35. Farmanzadeh D, Abdollahi T (2018) H2 adsorption on free and graphene-supported Ni nanoclusters: a theoretical study. Surf Sci 668:85

    Article  CAS  Google Scholar 

  36. Zhou C, Wu K, Huang H, Cao C-F, Luo Y, Chen C-Q, Lin L, Au C, Jiang L (2021) Spatial confinement of electron-rich Ni nanoparticles for efficient ammonia decomposition to hydrogen production. ACS Catal 11(16):10345

    Article  CAS  Google Scholar 

  37. Li W, Nie X, Jiang X, Zhang A, Ding F, Liu M, Liu Z, Guo X, Song C (2018) ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B-Environ 220:397–408

    Article  CAS  Google Scholar 

  38. Wang X, Liu Q, Jiang J, Jin G, Li H, Gu F, Xu G, Zhong Z, Su F (2016) SiO2-stabilized Ni/t-ZrO2 catalysts with ordered mesopores: one-pot synthesis and their superior catalytic performance in CO methanation. Catal Sci Tech 6(10):3529–3543

    Article  CAS  Google Scholar 

  39. Tan J, Wang J, Zhang Z, Ma Z, Wang L, Liu Y (2019) Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation. Appl Surf Sci 481:1538

    Article  CAS  Google Scholar 

  40. Liu J, Li C, Wang F, He S, Chen H, Zhao Y, Wei M, Evans DG, Duan X (2013) Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catal Sci Tech 3(10):2627

    Article  CAS  Google Scholar 

  41. Pokrovski K, Jung KT, Bell AT (2001) Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 17(14):4297–4303

    Article  CAS  Google Scholar 

  42. Wang SG, Cao DB, Li YW, Wang J, Jiao H (2005) Chemisorption of CO2 on nickel surfaces. J Phys Chem B 109(40):18956–18963

    Article  CAS  Google Scholar 

  43. Cao DB, Li YW, Wang J, Jiao H (2009) CO2 dissociation on Ni(211). Surfe Sci 603(19):2991–2998

    Article  CAS  Google Scholar 

  44. Wang Y, Ge Z, Shang F, Zhou C, Guo S, Ren C (2023) Kinetic analysis of CO2 gasification of corn straw. Renew Energy 203:219–227

    Article  CAS  Google Scholar 

  45. Onrubia-Calvo JA, Quindimil A, Davó-Quiñonero A, Bermejo-López A, Bailón-García E, Pereda-Ayo B, Lozano-Castelló D, González-Marcos JA, Bueno-López A, González-Velasco JR (2022) Kinetics, model discrimination, and parameters estimation of CO2 methanation on highly Active Ni/CeO2 Catalyst. Ind Eng Chem Res 61(29):10419–10435

    Article  CAS  Google Scholar 

  46. Chen J, Buchanan T, Walker EA, Toops TJ, Li Z, Kunal P, Kyriakidou EA (2021) Mechanistic understanding of methane combustion over Ni/CeO2: a combined experimental and theoretical approach. ACS Catal 11(15):9345–9354

    Article  CAS  Google Scholar 

  47. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  48. Zhao K, Wang W, Li Z (2016) Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation. J CO2 Util 16:236–244

    Article  CAS  Google Scholar 

  49. Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K (2006) Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys. Catal Commun 7(1):24–28

    Article  CAS  Google Scholar 

  50. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  51. Tada S, Kayamori S, Honma T, Kamei H, Nariyuki A, Kon K, Toyao T, Shimizu K-I, Satokawa S (2018) Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation. ACS Catal 8(9):7809–7819

    Article  CAS  Google Scholar 

  52. Sreenavya A, Ganesh V, Venkatesha NJ, Sakthivel A (2022) Facile water-free synthesis of noble metal-containing hydrotalcites-derived materials and their application for hydrotreatment of anisole. Biomass Convers Bior 18:100153

    Google Scholar 

  53. Sreenavya A, Aswin P, Ganesh V, Venkatesha NJ, Sakthivel A (2022) Hydrogenation of biomass derived furfural using Ru-Ni-Mg–Al-hydrotalcite material. Mater Today Sustain 18:100153

    Article  Google Scholar 

  54. Liu Y, Liang X, Zhang J, Yun J, Yang Z (2021) A low temperature organic synthesis of monodispersed NiRu nanocrystals for CO2 methanation. RSC Adv 11(4):2040

    Article  CAS  Google Scholar 

  55. Bal R, Tope BB, Das TK, Hegde SG, Sivasanker S (2001) Alkali-loaded silica, a solid base: investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J Catal 204(2):358–363

    Article  CAS  Google Scholar 

  56. Wang S, Zhao L, Wang W, Zhao Y, Zhang G, Ma X, Gong J (2013) Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 5(12):5582–5588

    Article  CAS  Google Scholar 

  57. Westermann A, Azambre B, Bacariza MC, Graça I, Ribeiro MF, Lopes JM, Henriques C (2015) nsight into CO2 methanation mechanism over NiUSY zeolites: an operando IR study. Appl Catal B-Environ 174–175:120–125

    Article  Google Scholar 

  58. Tang CL, Lv LP, Zhang LM, Tan LX, Dong LC (2017) High carbon-resistance Ni@CeO2 core-shell catalysts for dry reforming of methane. Kinet Catal 58(6):800–808

    Article  CAS  Google Scholar 

  59. Liu L, Wang S, Guo Y, Wang B, Rukundo P, Wen S (2016) Wang Zj, Synthesis of a highly dispersed Ni/Al2O3 catalyst with enhanced catalytic performance for CO2 reforming of methane by an electrospinning method. Inter J Hydrogen Energy 41(39):17361–17369

    Article  CAS  Google Scholar 

  60. Yan X, Liu Y, Zhao B, Wang Z, Wang Y, Liu C-j (2013) Methanation over Ni/SiO2: effect of the catalyst preparation methodologies. Inter J Hydrogen Energy 38(5):2283–2291

    Article  CAS  Google Scholar 

  61. Yan X, Zhao B, Liu Y, Li Y (2015) ielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: Current status and perspective. Catal Today 256:29–40

    Article  CAS  Google Scholar 

  62. Zhu X, Huo P, Zhang Y-p, Cheng D-g, Liu C-j (2008) Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Catal B-Environ 81(1):0926–3373

    Google Scholar 

  63. Hu D, Gao J, Ping Y, Jia L, Gunawan P, Zhong Z, Xu G, Gu F, Su F (2012) Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Ind Eng Chem Res 51(13):4875–4886

    Article  CAS  Google Scholar 

  64. Zhang X, Zhang M, Zhang J, Zhang Q, Tsubaki N, Tan Y, Han Y (2019) Methane decomposition and carbon deposition over Ni/ZrO2 catalysts: comparison of amorphous, tetragonal, and monoclinic zirconia phase. Inter J Hydrogen Energy 44(33):17887–17899

    Article  CAS  Google Scholar 

  65. Zhu H, Wang W, Ran R, Su C, Shi H, Shao Z (2012) Iron incorporated Ni–ZrO2 catalysts for electric power generation from methane. Inter J Hydrogen Energy 37(12):9801–9808

    Article  CAS  Google Scholar 

  66. Hammami R, Dhouib A, Fernandez S, Minot C (2008) CO2 adsorption on (001) surfaces of metal monoxides with rock-salt structure. Catal Today 139(3):227–233

    Article  CAS  Google Scholar 

  67. Reimers WG, Baltanas MA, Branda MM (2014) CO, CO2 and H2 adsorption on ZnO, CeO2, and ZnO/CeO2 surfaces: DFT simulations. J Mol Model 20(6):2270

    Article  Google Scholar 

  68. Wang X, Zhao J, Sun W, Pei Y, An J, Ren LZJ (2019) A DFT study of dimethyl carbonate synthesis from methanol and CO2 on zirconia: effect of crystalline phases. Comp Mater Sci 159:210–221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Key Research and Development Program of China (2022YFE0206600), Sichuan Science and Technology Program (2023YFSY0034) and Xi'an Jiaotong University Fund (xjh012020008). We thank technicians at Instrument Analysis Center of Xi'an Jiaotong University for their assistance with XRD, SEM, etc. The work was carried out at Shanxi Supercomputing Center of China, and the calculation were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Contributions

DL and XD contributed equally to this work on the determination of article structure, information collection, manuscript writing and revision. JC helped to search for literatures and write manuscript. ZJ did DFT calculation and drafted result in the article. YG gave many useful suggestions about topic selection and manuscript writing.

Corresponding author

Correspondence to Yang Guo.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ding, X., Liu, X. et al. CO2 hydrogenation to methane over Ni/ZrO2 and Ni/CeO2 catalysts: experimental and DFT studies. J Mater Sci 58, 12584–12595 (2023). https://doi.org/10.1007/s10853-023-08814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08814-8

Navigation