Skip to main content

Advertisement

Log in

The performance of a high-resistance semiconductor detector based on h-\(^{10}\)BN with thermal neutron detection capability

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Research on the semiconductors available for thermal neutron detection is of great significance for the development of thermal neutron detection technology and alleviating the dependence on rare \(^3\)He resources. Hexagonal boron nitride (h-\(^{10}\)BN) materials have attracted wide attention in the thermal neutron detection field because of their higher \(^{10}\)B content and unique two-dimensional layered lattice structure. Based on the metal organic chemical vapor deposition (MOCVD) method, a 70 \(\upmu \hbox {m}\) h-\(^{10}\)BN semiconductor detector was fabricated and experimentally studied. The product of the carrier mobility and lifetime (\(\mu \tau\)) of the semiconductor was 1.62\(\times 10^{-7}\) \(\hbox {cm}^2\)/V. The time response of the detector was less than 12 ns, and the charge collection efficiency (CCE) was more than 90%. The effects on detection performance of the electric field distribution were studied. At 700 V, the maximum depth at which charges were able to be collected was approximately 50 \(\upmu \hbox {m}\). The energy spectrum of the h-\(^{10}\)BN to thermal neutrons was observed with distinct peaks. The results indicate that h-\(^{10}\)BN has great potential in thermal neutron detection due to its high reaction section, compact volume and short trapping distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vitullo F, Lamirand V, Mosset J-B, Frajtag P, Pakari O, Perret G, Pautz A (2020) A mm\(^{3}\) fiber-coupled scintillator for in-core thermal neutron detection in CROCUS. IEEE Trans. Nucl. Sci. 67(4):625–635

    Article  CAS  Google Scholar 

  2. Miller SR, Marshall MSJ, Wart M, Crha J, Trtik P, Nagarkar VV (2020) High-resolution thermal neutron imaging with \(^{10}\)Boron/CsI: tl scintillator screen. IEEE Trans. Nucl. Sci. 67(8):1929–1933

    Article  CAS  Google Scholar 

  3. Hidaka H, Mizutani Y, Yoneda S (2020) Estimation of thermal and epithermal neutron fluences at the lunar surface from isotopic compositions of rare earth elements. Astrophys. J. 904(2):183

    Article  CAS  Google Scholar 

  4. Boffy R, Martel L, Schweins R, Somers J, Beaucour J, Bermejo FJ (2021) A NMR and SANS study of alkali-borosilicate behaviour under thermal neutron irradiation. J. Nucl. Mater. 544(152699):152699

    Article  CAS  Google Scholar 

  5. Testov DA, Briançon C, Dmitriev SN, Yeremin AV, Penionzhkevich YE, Pyatkov YV, Sokol EA (2009) Applications of \(^{3}\)He neutron detectors. Phys. At. Nucl. 72(1):1–5

    Article  CAS  Google Scholar 

  6. Fares M, Messai A, Begaa S, Salem M, Negara K, Debili MY, Messaoudi M (2021) \(^{3}\)He proportional counter development for thermal neutron detection. Radiat. Detect. Technol. Meth. 5(2):264–272

    Article  Google Scholar 

  7. Wang CL (2021) Gd-containing scintillators for thermal neutron detection via graph-based particle discrimination. Rev. Sci. Instrum. 92(10):103304

    Article  CAS  Google Scholar 

  8. Vuong PQ, Kim HJ, Khan A, Khan S, Kim SH, Park H, Kim J (2020) Silver-doped LiI crystal: a sensitive thermal neutron detector with pulse shape discrimination. IEEE Trans. Nucl. Sci. 67(10):2290–2294

    Article  CAS  Google Scholar 

  9. Zhu Z, Sun Z, Zou J, Tang B, Xiu Q, Wang R, Qu J, Deng W, Wang S, Peng J, Wang Z, Tang B, Zhang H (2020) Fabrication and performance evaluation of GaN thermal neutron detectors with \(^{6}\)LiF conversion layer. Chin. Physics B 29(9):090401

    Article  CAS  Google Scholar 

  10. Lee C-Y, Ban C-M, Lee H-R, Choo K-N, Jun B-H (2019) Thermal and fast neutron detection through high-purity single-crystal CVD diamonds. Appl. Radiat. Isot. 152:25–29

    Article  CAS  Google Scholar 

  11. Tupitsyn E, Bhattacharya P, Rowe E, Matei L, Groza M, Wiggins B, Burger A, Stowe A (2012) Single crystal of LiInSe\(_{2}\) semiconductor for neutron detector. Appl. Phys. Lett. 101(20):202101

    Article  Google Scholar 

  12. Jiang Y, Wu J, Yin Y, Lu Y, Wu K, Fan X, Lei J (2019) Improving thermal-neutron detection efficiency of silicon neutron detectors using the combined layers of \(^{10}\)B\(_{4}\)C on \(^{6}\)LiF. Nucl. Instrum. Methods Phys. Res. A 932:50–55

    Article  CAS  Google Scholar 

  13. Camacho-Mojica DC, López-Urías F (2016) Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures. Chem. Phys. Lett. 652:73–78

    Article  CAS  Google Scholar 

  14. Croci G, Muraro A, Cippo EP, Tardocchi M, Grosso G, Albani G, Angella G, Defendi I, Hall-Wilton R, Höglund C, Raspino D, Rhodes N, Robinson L, Schmidt S, Schooneveld E, Zeitelhack K, Gorini G (2018) A high-efficiency thermal neutron detector based on thin 3D \(^{10}\)B \(_{4}\)C converters for high-rate applications. EPL (Europhysics Letters) 123(5):52001

    Article  Google Scholar 

  15. Roth M, Mojaev E, Khakhan O, Fleider A, Dul’kin E, Schieber M (2014) Composite boron nitride neutron detectors. J. Cryst. Growth 401:791–794

    Article  CAS  Google Scholar 

  16. McGregor DS, Unruh TC, McNeil WJ (2008) Thermal neutron detection with pyrolytic boron nitride. Nucl. Instrum. Methods Phys. Res. A 591(3):530–533

    Article  CAS  Google Scholar 

  17. Hushur A, Manghnani MH, Werheit H, Dera P, Williams Q (2016) High-pressure phase transition makes boron carbide a wide-gap semiconductor. J. Phys. Condens. Matter 28(4):045403

    Article  Google Scholar 

  18. Chica DG, He Y, McCall KM, Chung DY, Pak RO, Trimarchi G, Liu Z, De Lurgio PM, Wessels BW, Kanatzidis MG (2020) Direct thermal neutron detection by the 2D semiconductor \(^{6}\)LiInP\(_{2}\)Se\(_{6}\). Nature 577(7790):346–349

    Article  CAS  Google Scholar 

  19. Maity A, Grenadier SJ, Li J, Lin JY, Jiang HX (2021) Hexagonal boron nitride: epitaxial growth and device applications. Prog. Quantum Electron. 76(100302):100302

    Article  Google Scholar 

  20. Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PAdS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM (2021) Structure properties and applications of two-dimensional hexagonal boron nitride. Adv Mater. 33(44):2101589

    Article  CAS  Google Scholar 

  21. Maity A, Doan TC, Li J, Lin JY, Jiang HX (2016) Realization of highly efficient hexagonal boron nitride neutron detectors. Appl. Phys. Lett. 109(7):072101

    Article  Google Scholar 

  22. Doan TC, Li J, Lin JY, Jiang HX (2016) Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy. Appl. Phys. Lett. 109(12):122101

    Article  Google Scholar 

  23. Li J, Dahal R, Majety S, Lin JY, Jiang HX (2011) Hexagonal boron nitride epitaxial layers as neutron detector materials. Nucl. Instrum. Methods Phys. Res. A 654(1):417–420

    Article  CAS  Google Scholar 

  24. Ahmed K, Dahal R, Weltz A, Lu JJ-Q, Danon Y, Bhat IB (2017) Metalorganic chemical vapor deposition of hexagonal boron nitride on (001) sapphire substrates for thermal neutron detector applications. Vacuum 137:81–84

    Article  CAS  Google Scholar 

  25. Maity A, Grenadier SJ, Li J, Lin JY, Jiang HX (2019) High sensitivity hexagonal boron nitride lateral neutron detectors. Appl. Phys. Lett. 114(22):222102

    Article  Google Scholar 

  26. Mballo A, Ahaitouf A, Sundaram S, Srivastava A, Ottapilakkal V, Gujrati R, Vuong P, Karrakchou S, Kumar M, Li X, Halfaya Y, Gautier S, Voss PL, Salvestrini JP, Ougazzaden A (2022) Natural boron and \(^{10}\)B-enriched hexagonal boron nitride for high-sensitivity self-biased metal-semiconductor-metal neutron detectors. ACS Omega 7(1):804–809

    Article  CAS  Google Scholar 

  27. Ahmed K, Dahal R, Weltz A, Lu J-Q, Danon Y, Bhat IB (2016) Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl. Phys. Lett. 109(11):113501

    Article  Google Scholar 

  28. Meng J, Wang D, Cheng L, Gao M, Zhang X (2019) Recent progress in synthesis, properties, and applications of hexagonal boron nitride-based heterostructures. Nanotechnology 30(7):074003

    Article  CAS  Google Scholar 

  29. Doan TC, Li J, Lin JY, Jiang HX (2014) Charge carrier transport properties in layer structured hexagonal boron nitride. AIP Adv. 4(10):107126

    Article  Google Scholar 

  30. Grenadier S, Maity A, Li J, Lin JY, Jiang HX (2019) Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers. Appl. Phys. Lett. 115(7):072108

    Article  Google Scholar 

  31. Doan TC, Li J, Lin JY, Jiang HX (2017) Response of alpha particles in hexagonal boron nitride neutron detectors. Appl. Phys. Lett. 110(21):213502

    Article  Google Scholar 

  32. Almohammad M, Li J, Lin JY, Jiang HX (2021) Charge collection and trapping mechanisms in hexagonal boron nitride epilayers. Appl. Phys. Lett. 119(22):221111

    Article  CAS  Google Scholar 

  33. Maity A, Grenadier SJ, Li J, Lin JY, Jiang HX (2020) High efficiency hexagonal boron nitride neutron detectors with 1 cm\(^{2}\) detection areas. Appl. Phys. Lett. 116(14):142102

    Article  CAS  Google Scholar 

  34. Ahmed K, Dahal R, Weltz A, Lu JJ-Q, Danon Y, Bhat IB (2017) Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl. Phys. Lett. 110(2):023503

    Article  Google Scholar 

  35. Jiang HX, Lin JY (2017) Review–hexagonal boron nitride epilayers: growth, optical properties and device applications. ECS J. Solid State Sci. Technol. 6(2):3012–3021

    Article  Google Scholar 

  36. Tingsuwatit A, Maity A, Grenadier SJ, Li J, Lin JY, Jiang HX (2022) Boron nitride neutron detector with the ability for detecting both thermal and fast neutrons. Appl. Phys. Lett. 120(23):232103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by The National Natural Science Foundation of China (No. 12050005, 12105230).

Author information

Authors and Affiliations

Authors

Contributions

HS contributed to methodology, formal analysis, writing–original draft preparation. WF contributed to methodology, validation, supervision. CL contributed to conceptualization, writing–review and editing. LY contributed to investigation, visualization, software. RJ contributed to data curation, funding acquisition. OX contributed to conceptualization, project administration.

Corresponding author

Correspondence to Liang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Wang, F., Chen, L. et al. The performance of a high-resistance semiconductor detector based on h-\(^{10}\)BN with thermal neutron detection capability. J Mater Sci 58, 12288–12297 (2023). https://doi.org/10.1007/s10853-023-08795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08795-8

Navigation