Skip to main content

Inorganic Halide Perovskite Thin Films for Neutron Detection

  • Chapter
  • First Online:
Advanced Materials for Radiation Detection

Abstract

The need for high-efficiency radiation detectors with wide-area coverage is essential in applications such as nuclear medicine, industrial imagining, environmental radioactivity monitoring, spacecraft applications, and homeland security, among others. For these applications, the detector material should interact strongly with high-energy particles or photons, must be able to operate at high electric fields with negligible leakage current, must possess high resistivity, and must be scalable. Cesium lead bromide (CsPbBr3) possesses excellent electric, electronic, and spectroscopic properties while showing endurance to humidity and good stability under extreme operating conditions. These properties make it an ideal material for high-energy radiation detectors. The use of CsPbBr3 for heavily charged particle sensing is normally limited to single crystals due to the lack of deposition techniques for thick CsPbBr3 films, which is necessary for efficient radiation and neutron sensing. This chapter shows methods that allow the deposition of perovskite thin films with controlled thickness. The close-space sublimation (CSS) process allows for the deposition of stoichiometric and high-quality CsPbBr3 films with reduced defects and large grains with high deposition rates. Alpha and neutron particle sensing using a p-n diode is discussed. This chapter demonstrates the potential of inorganic perovskite films for alpha and neutron detectors in planar and micro-structured perovskite thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Sun, R., Ou, X., et al.: Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano. 13, 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484

    Article  Google Scholar 

  2. Heo, J.H., Shin, D.H., Park, J.K., et al.: High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-Ray imaging. Adv. Mater. 30, 1801743 (2018). https://doi.org/10.1002/adma.201801743

    Article  Google Scholar 

  3. Chen, Q., Wu, J., Ou, X., et al.: All-inorganic perovskite nanocrystal scintillators. Nature. 561, 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1

    Article  Google Scholar 

  4. Stoumpos, C.C., Malliakas, C.D., Peters, J.A., et al.: Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t

    Article  Google Scholar 

  5. Li, X., Wu, Y., Zhang, S., et al.: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109

    Article  Google Scholar 

  6. Yettapu, G.R., Talukdar, D., Sarkar, S., et al.: Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16, 4838–4848 (2016). https://doi.org/10.1021/acs.nanolett.6b01168

    Article  Google Scholar 

  7. Shi, Z., Lei, L., Li, Y., et al.: Hole-injection layer-free perovskite light-emitting diodes. ACS Appl. Mater. Interfaces. 10, 32289–32297 (2018). https://doi.org/10.1021/acsami.8b07048

    Article  Google Scholar 

  8. Ding, J., Du, S., Zuo, Z., et al.: High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C. 121, 4917–4923 (2017). https://doi.org/10.1021/acs.jpcc.7b01171

    Article  Google Scholar 

  9. Cha, J.-H., Han, J.H., Yin, W., et al.: Photoresponse of CsPbBr3 and Cs4 PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8, 565–570 (2017). https://doi.org/10.1021/acs.jpclett.6b02763

    Article  Google Scholar 

  10. Saidaminov, M.I., Haque, M.A., Almutlaq, J., et al.: Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv. Opt. Mater. 5, 1600704 (2017). https://doi.org/10.1002/adom.201600704

    Article  Google Scholar 

  11. Zhang, H., Liu, X., Dong, J., et al.: Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 17, 6426–6431 (2017). https://doi.org/10.1021/acs.cgd.7b01086

    Article  Google Scholar 

  12. Liu, Z., Peters, J.A., Stoumpos, C.C., et al.: Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection. In: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV. International Society for Optics and Photonics (2013), p 88520A

    Google Scholar 

  13. Dirin, D.N., Cherniukh, I., Yakunin, S., et al.: Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 28, 8470–8474 (2016). https://doi.org/10.1021/acs.chemmater.6b04298

    Article  Google Scholar 

  14. Clark, D.J., Stoumpos, C.C., Saouma, F.O., et al.: Polarization-selective three-photon absorption and subsequent photoluminescence in ${\mathrm{ CsPbBr}}_{3}$ single crystal at room temperature. Phys. Rev. B. 93, 195202 (2016). https://doi.org/10.1103/PhysRevB.93.195202

    Article  Google Scholar 

  15. He, Y., Liu, Z., McCall, K.M., et al.: Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A. 922, 217–221 (2019). https://doi.org/10.1016/j.nima.2019.01.008

    Article  Google Scholar 

  16. He, Y., Matei, L., Jung, H.J., et al.: High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3

    Article  Google Scholar 

  17. Glodo, J., Wang, Y., Shawgo, R., et al.: New developments in scintillators for security applications. Phys. Procedia. 90, 285–290 (2017). https://doi.org/10.1016/j.phpro.2017.09.012

    Article  Google Scholar 

  18. Cho, H., Wolf, C., Kim, J.S., et al.: High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes. Adv. Mater. 29, 1700579 (2017). https://doi.org/10.1002/adma.201700579

    Article  Google Scholar 

  19. Duan, J., Zhao, Y., Yang, X., et al.: Lanthanide ions doped CsPbBr3 Halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V. Adv. Energy Mater. 8, 1802346 (2018). https://doi.org/10.1002/aenm.201802346

    Article  Google Scholar 

  20. Luo, P., Zhou, Y., Zhou, S., et al.: Fast anion-exchange from CsPbI3 to CsPbBr3 via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells. Chem. Eng. J. 343, 146–154 (2018). https://doi.org/10.1016/j.cej.2018.03.009

    Article  Google Scholar 

  21. Burwig, T., Fränzel, W., Pistor, P.: Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 9, 4808–4813 (2018). https://doi.org/10.1021/acs.jpclett.8b02059

    Article  Google Scholar 

  22. Zhuang, S., Ma, X., Hu, D., et al.: Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceram. Int. 44, 4685–4688 (2018). https://doi.org/10.1016/j.ceramint.2017.12.048

    Article  Google Scholar 

  23. Murphy, J.W., Kunnen, G.R., Mejia, I., et al.: Optimizing diode thickness for thin-film solid state thermal neutron detectors. Appl. Phys. Lett. 101, 143506 (2012). https://doi.org/10.1063/1.4757292

    Article  Google Scholar 

  24. Fernandez-Izquierdo, L., Reyes-Banda, M.G., Mathew, X., et al.: Cesium lead bromide (CsPbBr3) thin-film-based solid-state neutron detector developed by a solution-free sublimation process. Adv. Mater. Technol., 2000534. https://doi.org/10.1002/admt.202000534

  25. McGregor, D.S., Klann, R.T., Gersch, H.K., et al.: New surface morphology for low stress thin-film-coated thermal neutron detectors. IEEE Trans. Nucl. Sci. 49, 1999–2004 (2002). https://doi.org/10.1109/TNS.2002.801697

    Article  Google Scholar 

  26. Bellinger, S.L., Fronk, R.G., McNeil, W.J., et al.: Enhanced variant designs and characteristics of the microstructured solid-state neutron detector. Nucl. Instrum. Methods Phys. Res., Sect. A. 652, 387–391 (2011). https://doi.org/10.1016/j.nima.2010.08.049

    Article  Google Scholar 

  27. Fronk, R.G., Bellinger, S.L., Henson, L.C., et al.: Advancements in microstructured semiconductor neutron detector (MSND)-based instruments. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2015), pp 1–5

    Google Scholar 

  28. Nandagopala Krishnan, S.S., Avila-Avendano, C., Shamsi, Z., et al.: 10B conformal doping for highly efficient thermal neutron detectors. ACS Sens. 5, 2852–2857 (2020). https://doi.org/10.1021/acssensors.0c01013

    Article  Google Scholar 

  29. Fu, Y., Zhu, H., Stoumpos, C.C., et al.: Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano. 10, 7963–7972 (2016). https://doi.org/10.1021/acsnano.6b03916

    Article  Google Scholar 

  30. Li, J., Zhang, H., Wang, S., et al.: Inter-conversion between different compounds of ternary Cs-Pb-Br System. Materials (Basel). 11 (2018). https://doi.org/10.3390/ma11050717

  31. Chen, H., Zhang, M., Bo, R., et al.: Superior self-powered room-temperature chemical sensing with light-activated inorganic halides perovskites. Small. 14, 1702571 (2018). https://doi.org/10.1002/smll.201702571

    Article  Google Scholar 

  32. Endres, J., Kulbak, M., Zhao, L., et al.: Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system. J. Appl. Phys. 121, 035304 (2017). https://doi.org/10.1063/1.4974471

    Article  Google Scholar 

  33. Shen, Y., Wei, C., Ma, L., et al.: In situ formation of CsPbBr3/ZnO bulk heterojunctions towards photodetectors with ultrahigh responsivity. J. Mater. Chem. C. 6, 12164–12169 (2018). https://doi.org/10.1039/C8TC04374D

    Article  Google Scholar 

  34. Xue, M., Zhou, H., Ma, G., et al.: Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure. Sol. Energy Mater. Sol. Cells. 187, 69–75 (2018). https://doi.org/10.1016/j.solmat.2018.07.023

    Article  Google Scholar 

  35. Li, Y., Shi, Z.-F., Li, S., et al.: High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C. 5, 8355–8360 (2017). https://doi.org/10.1039/C7TC02137B

    Article  Google Scholar 

  36. McGregor, D.S., Hammig, M.D., Yang, Y.-H., et al.: Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films. Nucl. Instrum. Methods Phys. Res., Sect. A. 500, 272–308 (2003). https://doi.org/10.1016/S0168-9002(02)02078-8

    Article  Google Scholar 

  37. Murphy, J.W., Smith, L., Calkins, J., et al.: Thin film cadmium telluride charged particle sensors for large area neutron detectors. Appl. Phys. Lett. 105, 112107 (2014). https://doi.org/10.1063/1.4895925

    Article  Google Scholar 

  38. Wei, H., DeSantis, D., Wei, W., et al.: Dopant compensation in alloyed CH 3 NH 3 PbBr 3−x Cl x perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017). https://doi.org/10.1038/nmat4927

    Article  Google Scholar 

  39. He, X., Qiu, Y., Yang, S.: Fully-inorganic trihalide perovskite nanocrystals: a new research frontier of optoelectronic materials. Adv. Mater. 29, 1700775 (2017). https://doi.org/10.1002/adma.201700775

    Article  Google Scholar 

  40. Hu, Y., Wang, Q., Shi, Y.-L., et al.: Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C. 5, 8144–8149 (2017). https://doi.org/10.1039/C7TC02477K

    Article  Google Scholar 

  41. Wu, Y., Li, X., Fu, S., et al.: Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive. J. Mater. Chem. A. 7, 8078–8084 (2019). https://doi.org/10.1039/C9TA01319A

    Article  Google Scholar 

  42. Liashenko, T.G., Cherotchenko, E.D., Pushkarev, A.P., et al.: Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations. Phys. Chem. Chem. Phys. 21, 18930–18938 (2019). https://doi.org/10.1039/C9CP03656C

    Article  Google Scholar 

  43. Li, B., Zhang, Y., Zhang, L., Yin, L.: PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. J. Power Sources. 360, 11–20 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.050

    Article  Google Scholar 

  44. Zheng, L., Zhang, D., Ma, Y., et al.: Morphology control of the perovskite films for efficient solar cells. Dalton Trans. 44, 10582–10593 (2015). https://doi.org/10.1039/C4DT03869J

    Article  Google Scholar 

  45. Zhang, Y., Luo, L., Hua, J., et al.: Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Mater. Sci. Semicond. Process. 98, 39–43 (2019). https://doi.org/10.1016/j.mssp.2019.03.021

    Article  Google Scholar 

  46. Reyes-Banda, M.G., Fernandez-Izquierdo, L., Nandagopala Krishnan, S.S., et al.: Material properties modulation in inorganic perovskite films via solution-free solid-state reactions. ACS Appl. Electron. Mater. (2021). https://doi.org/10.1021/acsaelm.1c00072

  47. Calistru, D.M., Mihut, L., Lefrant, S., Baltog, I.: Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J. Appl. Phys. 82, 5391–5395 (1997). https://doi.org/10.1063/1.366307

    Article  Google Scholar 

  48. Zhang, L., Zeng, Q., Wang, K.: Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 3752–3758 (2017). https://doi.org/10.1021/acs.jpclett.7b01577

    Article  Google Scholar 

  49. Yin, J., Zhang, Y., Bruno, A., et al.: Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Lett. 2, 2805–2811 (2017). https://doi.org/10.1021/acsenergylett.7b01026

    Article  Google Scholar 

  50. Dursun, I., Zheng, Y., Guo, T., et al.: Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides. ACS Energy Lett. 3, 1492–1498 (2018). https://doi.org/10.1021/acsenergylett.8b00758

    Article  Google Scholar 

  51. Fang, Y., Wei, H., Dong, Q., Huang, J.: Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms14417

    Article  Google Scholar 

  52. Wu, B., Nguyen, H.T., Ku, Z., et al.: Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Adv. Energy Mater. 6, 1600551 (2016). https://doi.org/10.1002/aenm.201600551

    Article  Google Scholar 

  53. Priante, D., Dursun, I., Alias, M.S., et al.: The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Appl. Phys. Lett. 106, 081902 (2015). https://doi.org/10.1063/1.4913463

    Article  Google Scholar 

  54. Sebastian, M., Peters, J.A., Stoumpos, C.C., et al.: Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Giant-magnetoresistance anomaly associated with a magnetization process in UFe4Al8. Phys. Rev. B. 92, 235210 (2015). https://doi.org/10.1103/PhysRevB.92.235210

    Article  Google Scholar 

  55. Pintor-Monroy, M.I., Barrera, D., Murillo-Borjas, B.L., et al.: Tunable electrical and optical properties of nickel oxide (NiOx) thin films for fully transparent NiOx–Ga2O3 p–n junction diodes. ACS Appl. Mater. Interfaces. 10, 38159–38165 (2018). https://doi.org/10.1021/acsami.8b08095

    Article  Google Scholar 

  56. Wright, G., Cui, Y., Roy, U.N., et al.: The effects of chemical etching on the charge collection efficiency of 111 oriented Cd/sub-0.9/Zn/sub-0.1/Te nuclear radiation detectors. IEEE Trans. Nucl. Sci. 49, 2521–2525 (2002). https://doi.org/10.1109/TNS.2002.803852

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Quevedo-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-Izquierdo, L., Reyes-Banda, M.G., Caraveo-Frescas, J.A., Quevedo-Lopez, M. (2022). Inorganic Halide Perovskite Thin Films for Neutron Detection. In: Iniewski, K.(. (eds) Advanced Materials for Radiation Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-76461-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76461-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76460-9

  • Online ISBN: 978-3-030-76461-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics