Skip to main content
Log in

Effect of helium ion irradiation on pure W, W-5Ta and W-5Re: a micro-tensile and nanoindentation investigation of mechanical properties

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micro-tensile testing has been used to study the response of pure tungsten and two tungsten alloys to helium ion irradiation. Commercially supplied plates of W, W-5Ta and W-5Re were irradiated using 6 MeV helium ions at room temperature. The ion energy was attenuated with an energy spreading device such that a uniform level of damage at 0.6 dpa (and 11,000 appm He) was deposited at the 3–9 µm depth. Focused ion beam milling was used to fabricate dog-bone shaped, micro-tensile samples 5 × 5 µm in cross-sectional area and 17 µm in length from the unirradiated and irradiated samples. All micro-tensile samples were tested at a quasi-static strain rate and the stress–strain curves were analysed to determine the mechanical properties. A close correlation was found between micro-tensile results and the bulk mechanical properties reported in the literature. Comparison between the unirradiated micro-tensile properties of W-5Re and W-5Ta with W showed that, as expected, W-5Re was softer than W whilst W-5Ta had only minor differences in micro-tensile properties compared with W. The micro-tensile results of the irradiated W, W-5Ta and W-5Re showed an increase in strength and an almost complete loss of ductility compared to the unirradiated samples. In comparing micro-tensile results to nanoindentation measurements, it was found that micro-tensile offers comparable level of precision in measurement of irradiation hardening amongst W, W-5Ta and W-5Re. The implications of the results with respect to the future performance of tungsten-based materials in the divertors in fusion reactors are discussed in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings can be shared upon request.

References

  1. Stork D, Agostini P, Boutard JL, Buckthorpe D, Diegele E, Dudarev SL, English C, Federici G, Gilbert MR, Gonzalez S, Ibarra A, Linsmeier C, Li Puma A, Marbach G, Morris PF, Packer LW, Raj B, Rieth M, Tran MQ, Ward DJ, Zinkle SJ (2014) Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J Nucl Mater 455:277–291. https://doi.org/10.1016/j.jnucmat.2014.06.014

    Article  CAS  Google Scholar 

  2. Davis JW, Barabash VR, Makhankov A, Plochl L, Slattery KT (1998) Assessment of tungsten for use in the ITER plasma facing components. J Nucl Mater 258–263:308–312

    Article  Google Scholar 

  3. Griffith S (2012) ITER divertor under final review (http://www.iter.org), 2012

  4. Gilbert MR, Sublet J-C (2011) Neutron-induced transmutation effects in W and W-alloys in a fusion environment. Nucl Fusion 51:13

    Article  Google Scholar 

  5. Gilbert MR, Dudarev SL, Zheng S, Packer LW, Sublet J-C (2012) An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nucleear Fusion 52:12

    Google Scholar 

  6. Becquart CS, Domain C (2009) A density functional theory assessment of the clustering behaviour of He and H in tungsten. J Nucl Mater 386–388:109–111. https://doi.org/10.1016/j.jnucmat.2008.12.085

    Article  CAS  Google Scholar 

  7. Yih SWH, Wang CT (1979) Tungsten: sources, metallurgy properties and applications. Planum Press, New York

    Book  Google Scholar 

  8. Rieck GD (1967) Tungsten and its compounds. Pergamon Press, Oxford

    Google Scholar 

  9. Abernethy RG, Gibson JSKL, Giannattasio A, Murphy JD, Wouters O, Bradnam S, Packer LW, Gilbert MR, Klimenkov M, Rieth M, Schneider HC, Hardie CD, Roberts SG, Armstrong DEJ (2019) Effects of neutron irradiation on the brittle to ductile transition in single crystal tungsten. J Nucl Mater 527:151799. https://doi.org/10.1016/j.jnucmat.2019.151799

    Article  CAS  Google Scholar 

  10. Tanno T, Hasegawa A, Fujiwara M, He J, Nogami S, Satou M, Shishido T, Abe K (2008) Precipitation of solid transmutation elements in irradiated tungsten alloys. Mater Trans 49:2259–2264

    Article  CAS  Google Scholar 

  11. Tanno T, Hasegawa A, He J, Fujiwara M, Satou M, Nogami S, Abe K, Shishido T (2009) Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten. J Nucl Mater 386:218–221

    Article  Google Scholar 

  12. Nemoto Y, Hasegawa A, Satou M, Abe K (2000) Microstructural development of neutron irradiated W-Re alloys. J Nucl Mater 283–287:1144–1147

    Article  Google Scholar 

  13. Hasegawa A, Tanno T, Nogami S, Satou M (2011) Property change mechanism in tungsten under neutron irradiation. J Nucl Mater 417:491–494

    Article  CAS  Google Scholar 

  14. Gaganidze E, Chauhan A, Schneider HC, Terentyev D, Rossaert B, Aktaa J (2021) Effect of irradiation temperature on the fracture-mechanical behaviour of tungsten irradiated to 1 dpa. J Nucl Mater 556:153200. https://doi.org/10.1016/J.JNUCMAT.2021.153200

    Article  CAS  Google Scholar 

  15. Yin C, Terentyev D, Zhang T, Nogami S, Antusch S, Chang CC, Petrov RH, Pardoen T (2021) Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests. Int. J. Refract. Met. Hard Mater. 95:105464. https://doi.org/10.1016/J.IJRMHM.2020.105464

    Article  CAS  Google Scholar 

  16. Nogami S, Terentyev D, Zinovev A, Yin C, Rieth M, Pintsuk G, Hasegawa A (2021) Neutron irradiation tolerance of potassium-doped and rhenium-alloyed tungsten. J Nucl Mater 553:153009. https://doi.org/10.1016/J.JNUCMAT.2021.153009

    Article  CAS  Google Scholar 

  17. Ekman M, Persson K, Grimvall G (2000) phase diagram and lattice instability in tungsten-rhenium alloys. J Nucl Mater 278:273–276

    Article  CAS  Google Scholar 

  18. Tanno T, Hasegawa A, He J, Fujiwara M, Nogami S, Satou M, Shishido T, Abe K (2007) Effects of transmutation elements on neutron irradiation hardening of tungsten. Mater Trans 48:2399–2402

    Article  CAS  Google Scholar 

  19. Armstrong DEJ, Yi X, Marquis EA, Roberts SG (2013) Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium. J Nucl Mater 432:428–436

    Article  CAS  Google Scholar 

  20. Xu A, Armstrong DEJ, Beck C, Moody MP, Smith GDW, Bagot PAJ, Roberts SG (2017) Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study. Acta Mater 124:71–78. https://doi.org/10.1016/J.ACTAMAT.2016.10.050

    Article  CAS  Google Scholar 

  21. Xu A, Beck C, Armstrong DEJ, Rajan K, Smith GDW, Bagot PAJ, Roberts SG (2015) Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: a comparative study using atom probe tomography and nanoindentation measurements. Acta Mater 87:121–127. https://doi.org/10.1016/j.actamat.2014.12.049

    Article  CAS  Google Scholar 

  22. Harrison RW, Greaves G, Hinks JA, Donnelly SE (2019) Intermetallic Re phases formed in ion irradiated WRe alloy. J Nucl Mater 514:123–127. https://doi.org/10.1016/J.JNUCMAT.2018.11.021

    Article  CAS  Google Scholar 

  23. Hwang T, Fukuda M, Nogami S, Hasegawa A, Usami H, Yabuuchi K, Ozawa K, Tanigawa H (2016) Effect of self-ion irradiation on hardening and microstructure of tungsten. Nucl Mater Energy 9:430–435. https://doi.org/10.1016/J.NME.2016.06.005

    Article  Google Scholar 

  24. Nogami S, Ozawa I, Asami D, Matsuta N, Nakabayashi S, Baumgärtner S, Lied P, Yabuuchi K, Miyazawa T, Kikuchi Y, Wirtz M, Rieth M, Hasegawa A (2022) Tungsten–tantalum alloys for fusion reactor applications. J Nucl Mater 566:153740. https://doi.org/10.1016/J.JNUCMAT.2022.153740

    Article  CAS  Google Scholar 

  25. Zhao M, Liu F, Yang Z, Xu Q, Ding F, Li X, Zhou H, Luo GN (2018) Fluence dependence of helium ion irradiation effects on the microstructure and mechanical properties of tungsten. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 414:121–125. https://doi.org/10.1016/j.nimb.2017.09.002

    Article  CAS  Google Scholar 

  26. Kong F, Qu M, Yan S, Zhang A, Peng S, Xue J, Wang Y (2017) Helium-induced hardening effect in polycrystalline tungsten. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 406:643–647. https://doi.org/10.1016/j.nimb.2017.02.029

    Article  CAS  Google Scholar 

  27. Chen Z, Niu LL, Wang Z, Tian L, Kecskes L, Zhu K, Wei Q (2018) A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain. Acta Mater 147:100–112. https://doi.org/10.1016/j.actamat.2018.01.015

    Article  CAS  Google Scholar 

  28. Bonk S, Hoffmann J, Hoffmann A, Reiser J (2018) Cold rolled tungsten (W) plates and foils: evolution of the tensile properties and their indication towards deformation mechanisms. Int J Refract Met Hard Mater 70:124–133. https://doi.org/10.1016/j.ijrmhm.2017.09.007

    Article  CAS  Google Scholar 

  29. Reiser J, Hoffmann J, Jäntsch U, Klimenkov M, Bonk S, Bonnekoh C, Hoffmann A, Mrotzek T, Rieth M (2017) Ductilisation of tungsten (W): on the increase of strength AND room-temperature tensile ductility through cold-rolling. Int J Refract Met Hard Mater 64:261–278. https://doi.org/10.1016/J.IJRMHM.2016.10.018

    Article  CAS  Google Scholar 

  30. Kneringer G, Rodhammer P, Wildner H (2001) 15th international plansee seminar 2001 Vol 1. https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/053/32053122.pdf. Accessed 13 May 2020

  31. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B 268:1818–1823

    Article  CAS  Google Scholar 

  32. Konobeyev AY, Fischer U, Korovin YA, Simakov SP (2017) Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl Energy Technol 3:169–175. https://doi.org/10.1016/j.nucet.2017.08.007

    Article  Google Scholar 

  33. Xu A, Saleh M, Davis J, Edwards L, Bhattacharyya D (2018) In-situ micro-tensile investigation of strain rate response along <100> and <110> directions in single crystal nickel. Int J Plast 106:129–144. https://doi.org/10.1016/j.ijplas.2018.03.005

    Article  CAS  Google Scholar 

  34. Saleh M, Xu A, Hurt C, Ionescu M, Daniels J, Munroe P, Edwards L, Bhattacharyya D (2019) Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel. Int J Plast. https://doi.org/10.1016/j.ijplas.2018.08.015

    Article  Google Scholar 

  35. Xu A, Yang C, Thorogood G, Bhattacharyya D (2020) Investigating bulk mechanical properties on a micro-scale: micro-tensile testing of ultrafine grained Ni–SiC composite to determine its fracture mechanism and strain rate sensitivity. J Alloys Compd 81:7. https://doi.org/10.1016/j.jallcom.2019.152774

    Article  CAS  Google Scholar 

  36. Vo HT, Reichardt A, Frazer D, Bailey N, Chou P, Hosemann P (2017) In situ micro-tensile testing on proton beam-irradiated stainless steel. J Nucl Mater 493:336–342. https://doi.org/10.1016/j.jnucmat.2017.06.026

    Article  CAS  Google Scholar 

  37. Raffo PL (1968) Yielding and fracture in tungsten and tungsten -rhenium alloys 39. https://ntrs.nasa.gov/api/citations/19680015005/downloads/19680015005.pdf

  38. Wang K, Doerner RP, Baldwin MJ, Parish CM (2018) Flux and fluence dependent helium plasma-materials interaction in hot-rolled and recrystallized tungsten. J Nucl Mater 510:80–92. https://doi.org/10.1016/J.JNUCMAT.2018.07.048

    Article  CAS  Google Scholar 

  39. Seidman DN (1979) On the point-defect annealing mechanism for stage III recovery in irradiated or quenched tungsten. Scr Metall 13:251–257

    Article  CAS  Google Scholar 

  40. Guo W, Cheng L, De Temmerman G, Yuan Y, Lu GH (2018) Retarded recrystallization of helium-exposed tungsten. Nucl Fusion 58:106011. https://doi.org/10.1088/1741-4326/AAD2B0

    Article  Google Scholar 

  41. Thompson MAT, Song K, De Temmerman G, Chen H, Kirby N, Bradby J, Bhattacharyya D, Hoang C, Corr CS (2022) Identifying microstructural changes responsible for retarded grain growth during tungsten recrystallization after helium plasma exposure. J Nucl Mater 559:153448. https://doi.org/10.1016/J.JNUCMAT.2021.153448

    Article  CAS  Google Scholar 

  42. Xu A, Armstrong DEJ, Beck C, Moody MP, Smith GDW, Bagot PAJ, Roberts SG (2017) Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: an atom probe tomography and nanoindentation study. Acta Mater. https://doi.org/10.1016/j.actamat.2016.10.050

    Article  Google Scholar 

  43. Yu JH, Kurotaki H, Ando M, Nozawa T (2022) Mechanical properties of self-ion irradiated pure tungsten using nano-indentation test and micro-tensile test. Nucl Mater Energy 30:101145. https://doi.org/10.1016/J.NME.2022.101145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Nuclear Fuel Cycle (NFC), Nuclear Materials Development and Characterization group (NMDC) and Colin Hobman from the Maintenance Workshop at ANSTO for their advice and help on sample preparation related issues. Sincere thanks are also due to Dr. Robert Wheeler of MicroTesting Solutions LLC ®, OH, for many fruitful discussions and suggestions.

Funding

This project was funded by internal research funding from the Nuclear Fuel Cycle.

Author information

Authors and Affiliations

Authors

Contributions

AX designed the experiments and performed the annealing, micro-mechanical testing, nanoindentation and EBSD analysis and subsequent data analysis. AX also drafted the original paper. TW and MI helped with ion irradiation and scientific discussions. TP grinded and polished the tungsten samples. KS assisted with nanoindentation. DA provided materials and scientific discussions. DB and GS reviewed and edited the original manuscript.

Corresponding author

Correspondence to Alan Xu.

Ethics declarations

Conflict of interest

The authors declare they have no competing research or financial interests that affects the quality of the work presented here.

Ethical approval

This paper does not involve experiments on humans or animals.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Wei, T., Short, K. et al. Effect of helium ion irradiation on pure W, W-5Ta and W-5Re: a micro-tensile and nanoindentation investigation of mechanical properties. J Mater Sci 58, 10501–10515 (2023). https://doi.org/10.1007/s10853-023-08647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08647-5

Navigation