Skip to main content
Log in

Unveiling the properties of transition-metal dichalcogenides: a comprehensive study of WTe2, WSe2, ZrTe2, and NiTe2 in bulk and monolayer forms

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Publisher Correction to this article was published on 13 June 2023

This article has been updated

Abstract

This study conducts a thorough examination of the properties of four transition-metal dichalcogenides (TMDCs): WTe2, WSe2, ZrTe2, and NiTe2, using first-principles density functional theory calculations. The results reveal that WSe2 and WTe2 exhibit semiconducting behavior in both bulk and monolayer forms, while ZrTe2 and NiTe2 exhibit metallic behavior in their bulk forms. However, a deviation from metallic behavior is observed in the monolayer form of NiTe2. The study also delves into the optical characteristics of both bulk and monolayer forms, including dielectric function, reflectivity, absorption coefficient, refraction coefficient, and electron energy loss function. These findings provide a comprehensive understanding of the properties of these TMDCs, which can be utilized in the design of advanced optoelectronic devices. Moreover, the observed decrease in absorption coefficient in the monolayer forms of these TMDCs can be leveraged for transparent conductor technology. Overall, this study presents a detailed analysis of the properties of TMDCs, highlighting their potential for technological exploitation in a wide range of optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

The authors declare that the data used in this study are available upon request from the corresponding author within a reasonable time frame.

Change history

References

  1. Dahiya Y et al (2022) Modified transition metal chalcogenides for high performance supercapacitors: current trends and emerging opportunities. Coord Chem Rev 451:214265

    Article  CAS  Google Scholar 

  2. Wang X et al (2018) Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries. Electrochim Acta 283:1660–1667

    Article  CAS  Google Scholar 

  3. Zhou X et al (2016) Performance of a vanadium redox flow battery with a VANADion membrane. Appl Energy 180:353–359

    Article  CAS  Google Scholar 

  4. Cunha Á et al (2015) Vanadium redox flow batteries: a technology review. Int J Energy Res 39(7):889–918

    Article  CAS  Google Scholar 

  5. Yin W et al (2020) Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications. Chem Mater 32(11):4409–4424

    Article  CAS  Google Scholar 

  6. Tai Z et al (2022) Defected tungsten disulfide decorated CdS nanorods with covalent heterointerfaces for boosted photocatalytic H2 generation. J Colloid Interface Sci 628:252–260

    Article  CAS  Google Scholar 

  7. Wang Q et al (2016) Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. Int J Hydrogen Energy 41(47):21870–21882

    Article  CAS  Google Scholar 

  8. Dehkordi AM, Vashaee D (2012) Enhancement in thermoelectric power factor of polycrystalline Bi0. 5Sb1. 5Te3 by crystallite alignment. Phys Status Solidi (a) 209(11):2131–2134

    Article  CAS  Google Scholar 

  9. Dresselhaus M et al (2007) Nanocomposites to enhance ZT in thermoelectrics. MRS Online Proceedings Library (OPL) 1044:1044-UO2-04

    Google Scholar 

  10. Nozariasbmarz A et al (2021) Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials. Appl Energy 283:116211

    Article  CAS  Google Scholar 

  11. Nozariasbmarz A, Krasinski JS, Vashaee D (2019) N-type bismuth telluride nanocomposite materials optimization for thermoelectric generators in wearable applications. Materials 12(9):1529

    Article  CAS  Google Scholar 

  12. Polash MMH et al (2020) Magnon-drag thermopower in antiferromagnets versus ferromagnets. J Mater Chem C 8(12):4049–4057

    Article  CAS  Google Scholar 

  13. Polash MMH et al (2021) Understanding and design of spin-driven thermoelectrics. Cell Rep Phys Sci 2(11):100614

    Article  CAS  Google Scholar 

  14. Polash MMH, Rasoulianboroujeni M, Vashaee D (2020) Magnon and spin transition contribution in heat capacity of ferromagnetic Cr-doped MnTe: Experimental evidence for a paramagnetic spin-caloritronic effect. Appl Phys Lett 117(4):043903

    Article  CAS  Google Scholar 

  15. Polash MMH, Vashaee D (2020) Magnon-bipolar carrier drag thermopower in antiferromagnetic/ferromagnetic semiconductors: Theoretical formulation and experimental evidence. Phys Rev B 102(4):045202

    Article  CAS  Google Scholar 

  16. Polash MMH, Vashaee D (2021) Anomalous thermoelectric transport properties of Fe‐rich magnetic FeTe. Phys Status Solidi (RRL) Rapid Res Lett 15(10):2100231

  17. Polash MMH, Vashaee D (2021) Spin fluctuations yield zT enhancement in ferromagnets. Iscience 24(11):103356

    Article  CAS  Google Scholar 

  18. Zheng Y et al. (2019) Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci Adv 5(9):eaat9461

  19. Baraeinejad B et al (2022) Design and implementation of an ultralow-power ECG patch and smart cloud-based platform. IEEE Trans Instrum Meas 71:1–11

    Article  Google Scholar 

  20. Tayebi L, Zamanipour Z, Vashaee D (2014) Design optimization of micro-fabricated thermoelectric devices for solar power generation. Renew Energy 69:166–173

    Article  Google Scholar 

  21. Polash MMH et al (2021) Topological quantum matter to topological phase conversion: fundamentals, materials, physical systems for phase conversions, and device applications. Mater Sci Eng R Rep 145:100620

    Article  Google Scholar 

  22. Lacroix M et al. (1989) Hydrogenating properties of unsupported transition metal sulfides. J Catalysis, USA, 120(2)

  23. Delgado AD et al (2022) Monolayer CoMoS catalysts on hierarchically porous alumina spheres as bifunctional nanomaterials for hydrodesulfurization and energy storage applications. Catalysts 12(8):913

    Article  CAS  Google Scholar 

  24. Lee HJ et al (2019) Ultrahigh-mobility and solution-processed inorganic P-channel thin-film transistors based on a transition-metal halide semiconductor. ACS Appl Mater Interfaces 11(43):40243–40251

    Article  CAS  Google Scholar 

  25. Pang C et al (2021) High-performance inorganically connected CuInSe2 nanocrystal thin-film transistors and integrated circuits based on the solution process of colloidal synthesis, ligand exchange, and surface treatment. Chem Mater 33(22):8775–8785

    Article  CAS  Google Scholar 

  26. Khan MAU et al (2020) Analytical current transport modeling of monolayer molybdenum disulfide-based dual gate tunnel field effect transistor. IEEE Trans Nanotechnol 19:620–627

    Article  CAS  Google Scholar 

  27. Lator E (2019) Superconductivity In Layered Transition Metal (Di) chalcogenides: Iron Selenide And Niobium Diselenide. UCL (University College London)

  28. Cheng F et al (2018) Epitaxial growth of single-layer niobium selenides with controlled stoichiometric phases. Adv Mater Interfaces 5(15):1800429

    Article  Google Scholar 

  29. Grahlow F et al (2021) Formation of a polar structure in the metallic niobium sulfide Nb4S3. Inorg Chem 60(23):17669–17676

    Article  CAS  Google Scholar 

  30. Bucher E (1992) Photovoltaic properties of solid state junctions of layered semiconductors. Photoelectrochem Photovoltaics Layered Semiconductors, pp 1–81

  31. Ramasami AK, Reddy M, Balakrishna GR (2015) Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process 40:194–202

    Article  CAS  Google Scholar 

  32. Li J et al. (2020) Structural and elastic properties of WSe2: first-principles calculations. J Phys Conf Ser. IOP Publishing

  33. Wilson JA, Yoffe A (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18(73):193–335

    Article  CAS  Google Scholar 

  34. Yoffe A (1973) Layer compounds. Annu Rev Mater Sci 3(1):147–170

    Article  CAS  Google Scholar 

  35. Yoffe AD (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42(2):173–262

    Article  CAS  Google Scholar 

  36. Canpolat M et al (2019) Structural and electronic properties of BiOF with two-dimensional layered structure under high pressure: Ab initio study. Solid State Commun 288:33–37

    Article  CAS  Google Scholar 

  37. Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12):9934–9938

    Article  CAS  Google Scholar 

  38. Hwang WS et al. (2012) First demonstration of two-dimensional WS 2 transistors exhibiting 10 5 room temperature modulation and ambipolar behavior. In: 70th Device research conference. IEEE

  39. Ilatikhameneh H et al (2015) Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J Explor Solid State Comput Devices Circuits 1:12–18

    Article  Google Scholar 

  40. Kang J et al (2013) Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett 102(1):012111

    Article  Google Scholar 

  41. Gong C et al (2013) Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Lett 103(5):053513

    Article  Google Scholar 

  42. Li M et al (2014) Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J Appl Phys 115(7):074508

    Article  Google Scholar 

  43. Yin Z et al (2012) Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80

    Article  CAS  Google Scholar 

  44. Perea-López N et al (2013) Photosensor device based on few-layered WS2 films. Adv Func Mater 23(44):5511–5517

    Article  Google Scholar 

  45. Perkins FK et al (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673

    Article  CAS  Google Scholar 

  46. Lu Y et al (2010) DNA-decorated graphene chemical sensors. Appl Phys Lett 97(8):083107

    Article  Google Scholar 

  47. Wang L et al (2014) Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6):1101–1105

    Article  CAS  Google Scholar 

  48. Lee J et al (2013) High frequency MoS2 nanomechanical resonators. ACS Nano 7(7):6086–6091

    Article  CAS  Google Scholar 

  49. Kaul AB (2013) Nano-electro-mechanical-systems (NEMS) and energy-efficient electronics and the emergence of two-dimensional layered materials beyond graphene. In: Micro Nanotechnol Sens Syst Appl V. SPIE

  50. Yalameha S et al (2021) Promising bialkali bismuthides Cs (Na, K) 2Bi for high-performance nanoscale electromechanical devices: prediction of mechanical and anisotropic elastic properties under hydrostatic tension and compression and tunable auxetic properties. Nanomaterials 11(10):2739

    Article  CAS  Google Scholar 

  51. Uchoa B, Cabrera G, Neto AC (2005) Nodal liquid and s-wave superconductivity in transition metal dichalcogenides. Phys Rev B 71(18):184509

    Article  Google Scholar 

  52. Yun WS et al (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te). Phys Rev B 85(3):033305

    Article  Google Scholar 

  53. Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2(24):8981–8987

    Article  CAS  Google Scholar 

  54. Chee SS et al (2020) Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv Func Mater 30(11):1908147

    Article  CAS  Google Scholar 

  55. Wang Z et al (2020) A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv Func Mater 30(5):1907945

    Article  CAS  Google Scholar 

  56. Shi S et al (2020) FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Func Mater 30(10):1909283

    Article  CAS  Google Scholar 

  57. Cui Y et al (2020) Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv Func Mater 30(10):1908755

    Article  CAS  Google Scholar 

  58. Tay RY et al (2020) Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv Func Mater 30(10):1909604

    Article  CAS  Google Scholar 

  59. Shen J et al (2018) 2D MXene nanofilms with tunable gas transport channels. Adv Func Mater 28(31):1801511

    Article  Google Scholar 

  60. Bozheyev F, Ellmer K (2022) Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: a review. J Mater Chem A

  61. Bernede J, Pouzet J, Alaoui Z (1990) Preparation and characterization of molybdenum diselenide thin films. Appl Phys A 51:155–159

    Article  Google Scholar 

  62. Zhao B et al (2018) Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J Am Chem Soc 140(43):14217–14223

    Article  CAS  Google Scholar 

  63. Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

    Article  CAS  Google Scholar 

  64. Larentis S, Fallahazad B, Tutuc E (2012) Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett 101(22):223104

    Article  Google Scholar 

  65. Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670

    Article  CAS  Google Scholar 

  66. Lagarde D et al (2014) Carrier and polarization dynamics in monolayer MoS 2. Phys Rev Lett 112(4):047401

    Article  CAS  Google Scholar 

  67. Mak KF et al (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7(8):494–498

    Article  CAS  Google Scholar 

  68. Zeng H et al (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7(8):490–493

    Article  CAS  Google Scholar 

  69. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  Google Scholar 

  70. Wu S et al (2015) Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520(7545):69–72

    Article  CAS  Google Scholar 

  71. Manzeli S et al (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2(8):1–15

    Article  Google Scholar 

  72. Wang QH et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  Google Scholar 

  73. Chhowalla M et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275

    Article  Google Scholar 

  74. Soluyanov AA et al (2015) Type-ii weyl semimetals. Nature 527(7579):495–498

    Article  CAS  Google Scholar 

  75. ElGhazali MA et al. (2017) Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdS e 2. Phys Rev B 96(6):060509

  76. Nourbakhsh A et al (2016) MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett 16(12):7798–7806

    Article  CAS  Google Scholar 

  77. Fang L et al (2005) Fabrication and superconductivity of Na x Ta S 2 crystals. Phys Rev B 72(1):014534

    Article  Google Scholar 

  78. Wagner K et al (2008) Tuning the charge density wave and superconductivity in Cu x TaS 2. Phys Rev B 78(10):104520

    Article  Google Scholar 

  79. Jishi R, Alyahyaei H (2008) Electronic structure of superconducting copper intercalated transition metal dichalcogenides: first-principles calculations. Phys Rev B 78(14):144516

    Article  Google Scholar 

  80. Morosan E et al (2010) Multiple electronic transitions and superconductivity in Pd x TiSe 2. Phys Rev B 81(9):094524

    Article  Google Scholar 

  81. Kiswandhi A et al (2013) Competition between the structural phase transition and superconductivity in Ir 1–x Pt x Te 2 as revealed by pressure effects. Phys Rev B 87(12):121107

    Article  Google Scholar 

  82. Chang T-R et al (2016) Topological Dirac surface states and superconducting pairing correlations in PbTaSe 2. Phys Rev B 93(24):245130

    Article  Google Scholar 

  83. Guzman D, Onofrio N, Strachan A (2017) First principles investigation of copper and silver intercalated molybdenum disulfide. J Appl Phys 121(5):055703

    Article  Google Scholar 

  84. Kumar A, Ahluwalia P (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85(6):1–7

    Article  Google Scholar 

  85. Kam K, Parkinson B (1982) Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 86(4):463–467

    Article  CAS  Google Scholar 

  86. Coehoorn R, Haas C, De Groot R (1987) Electronic structure of MoSe 2, MoS 2, and WSe 2. II. The nature of the optical band gaps. Phys Rev B 35(12):6203

  87. Tenne R, Wold A (1985) Passivation of recombination centers in n-WSe2 yields high efficiency (> 14%) photoelectrochemical cell. Appl Phys Lett 47(7):707–709

    Article  CAS  Google Scholar 

  88. Sienicki W, Hryniewicz T (1996) Tungsten diselenide heterojunction photoelectrodes. Sol Energy Mater Sol Cells 43(1):67–72

    Article  CAS  Google Scholar 

  89. Villaos RAB et al (2021) Evolution of the electronic properties of ZrX2 (X= S, Se, or Te) thin films under varying thickness. J Phys Chem C 125(1):1134–1142

    Article  CAS  Google Scholar 

  90. Sheik-Bahae M, Van Stryland EW (1999) Optical nonlinearities in the transparency region of bulk semiconductors. UNIVERSITY OF CENTRAL FLORIDA ORLANDO

  91. De Araújo CB, Gomes AS, Boudebs G (2016) Techniques for nonlinear optical characterization of materials: a review. Rep Prog Phys 79(3):036401

    Article  Google Scholar 

  92. Dulal RP et al (2019) Nanostructures of type-II topological Dirac semimetal NiTe2. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 37(4):042903

    Google Scholar 

  93. Liu Q et al (2019) Nontopological origin of the planar Hall effect in the type-II Dirac semimetal NiTe 2. Phys Rev B 99(15):155119

    Article  CAS  Google Scholar 

  94. Li Y et al (2018) Porous NiTe2 nanosheet array: An effective electrochemical sensor for glucose detection. Sens Actuators B Chem 274:427–432

    Article  CAS  Google Scholar 

  95. Wang Z et al (2019) Rational design of metallic NiTe x (x= 1 or 2) as bifunctional electrocatalysts for efficient urea conversion. ACS Appl Energy Mater 2(5):3363–3372

    Article  CAS  Google Scholar 

  96. Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  CAS  Google Scholar 

  97. Kumar A, Ahluwalia P (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:1–7

    Article  Google Scholar 

  98. Smith RJ et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34):3944–3948

    Article  CAS  Google Scholar 

  99. Liu B et al (2010) Pressure induced semiconductor-semimetal transition in WSe2. J Phys Chem C 114(33):14251–14254

    Article  CAS  Google Scholar 

  100. Ansari R, Malakpour S, Faghihnasiri M (2014) Effects of in-plane electric field and temperature change on Young’s modulus of hexagonal boron nitride nanosheets with different chiralities. Superlattices Microstruct 68:16–26

    Article  CAS  Google Scholar 

  101. Ahmadi A et al (2019) Strain induced NDR and rectification behavior of the γ-graphyne nanotubes. Mater Res Exp 6(4):045050

    Article  Google Scholar 

  102. Schutte W, De Boer J, Jellinek F (1987) Crystal structures of tungsten disulfide and diselenide. J Solid State Chem 70(2):207–209

    Article  CAS  Google Scholar 

  103. Mak KF et al (2010) Atomically thin MoS 2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  Google Scholar 

  104. Ansari R et al (2013) Structural and elastic properties of carbon nanotubes containing Fe atoms using first principles. Superlattices Microstruct 64:220–226

    Article  CAS  Google Scholar 

  105. Ahmadi A et al (2019) Nonlinear Electronic transport behavior of $\Upsilon $-graphyne nanotubes. IEEE Trans Electron Devices 66(3):1584–1590

    Article  CAS  Google Scholar 

  106. Straub T et al (1996) Valence-band maximum in the layered semiconductor W Se 2: Application of constant-energy contour mapping by photoemission. Phys Rev B 53(24):R16152

    Article  CAS  Google Scholar 

  107. Finteis T et al (1997) Occupied and unoccupied electronic band structure of WSe 2. Phys Rev B 55(16):10400

    Article  CAS  Google Scholar 

  108. Traving M et al (1997) Electronic structure of WSe 2: A combined photoemission and inverse photoemission study. Phys Rev B 55(16):10392

    Article  CAS  Google Scholar 

  109. Lewerenz H, Heller A, DiSalvo F (1980) Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes. J Am Chem Soc 102(6):1877–1880

    Article  CAS  Google Scholar 

  110. Zhu C et al (2011) Structural transitions of NaAlH4 under high pressure by first-principles calculations. Phys B 406(8):1612–1614

    Article  CAS  Google Scholar 

  111. Torun E et al (2016) Anisotropic electronic, mechanical, and optical properties of monolayer WTe2. J Appl Phys 119(7):074307

    Article  Google Scholar 

  112. Jana MK et al (2015) A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2. J Phys Condens Matter 27(28):285401

    Article  Google Scholar 

  113. Brown BE (1966) The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr A 20(2):268–274

    Article  CAS  Google Scholar 

  114. Dawson W, Bullett D (1987) Electronic structure and crystallography of MoTe2 and WTe2. J Phys C Solid State Phys 20(36):6159

    Article  CAS  Google Scholar 

  115. Pizzochero M, Yazyev OV (2018) Single-layer 1T′-MoS2 under electron irradiation from ab initio molecular dynamics. 2D Mater 5(2):025022

  116. Blaha P (1991) A full potential linearized augmented plane wave package for calculating crystal properties. Karlheinz Schwarz. Techn. Universit at Wien, Austria

    Google Scholar 

  117. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  118. Kar I et al (2020) Metal-chalcogen bond-length induced electronic phase transition from semiconductor to topological semimetal in Zr X 2 (X= Se and Te). Phys Rev B 101(16):165122

    Article  CAS  Google Scholar 

  119. Xu C et al (2018) Topological type-II Dirac fermions approaching the Fermi level in a transition metal dichalcogenide NiTe2. Chem Mater 30(14):4823–4830

    Article  CAS  Google Scholar 

  120. Lee CH (2015) Tungsten ditelluride (WTe2): an atomic layered semimetal

  121. Delphine SM, Jayachandran M, Sanjeeviraja C (2003) Pulsed electrodeposition and characterisation of tungsten diselenide thin films. Mater Chem Phys 81(1):78–83

    Article  CAS  Google Scholar 

  122. Mao Y et al (2023) The electronic, mechanical properties and in-plane negative Poisson’s ratio in novel pentagonal NiX2 (X= S, Se, Te) monolayers with strong anisotropy: a first-principles prediction. Comput Mater Sci 216:111873

    Article  CAS  Google Scholar 

  123. Guo H et al (2014) Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J Phys Chem C 118(13):7242–7249

    Article  CAS  Google Scholar 

  124. Qi M et al (2020) Pressure-driven Lifshitz transition in type-II Dirac semimetal NiTe 2. Phys Rev B 101(11):115124

    Article  CAS  Google Scholar 

  125. Aras M, Kılıç Ç, Ciraci S (2020) Magnetic ground state in FeTe 2, VS 2, and NiTe 2 monolayers: Antiparallel magnetic moments at chalcogen atoms. Phys Rev B 101(5):054429

    Article  CAS  Google Scholar 

  126. Islam MR et al (2022) Impact of strain on the electronic, phonon, and optical properties of monolayer transition metal dichalcogenides XTe2 (X= Mo and W). Phys Scr 97(4):045806

    Article  Google Scholar 

  127. Gusakova J et al. (2017) Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). Phys Status Solidi (a) 214(12):1700218

  128. Zhao B et al (2021) 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications. Adv Func Mater 31(48):2105132

    Article  CAS  Google Scholar 

  129. Luo Y et al (2021) First-principles study on band gaps and transport properties of van der Waals WSe2/WTe2 heterostructure. Zeitschrift für Naturforschung A 76(4):361–370

    Article  CAS  Google Scholar 

  130. Li Y et al (2014) Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2, Mo S e 2, WS 2, and WS e 2. Phys Rev B 90(20):205422

    Article  Google Scholar 

  131. Nourbakhsh Z (2010) Structural, electronic and optical properties of ZnX and CdX compounds (X= Se, Te and S) under hydrostatic pressure. J Alloy Compd 505(2):698–711

    Article  CAS  Google Scholar 

  132. Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1):1–14

    Article  CAS  Google Scholar 

  133. Slassi A et al (2015) Ab initio study on the electronic, optical and electrical properties of Ti-, Sn- and Zr-doped ZnO. Solid State Commun 218:45–48

    Article  CAS  Google Scholar 

  134. Narimani M, Nourbakhsh Z (2017) Topological phase and optical properties of LuNiBi bulk and nano-layer. Thin Solid Films 634:112–120

    Article  CAS  Google Scholar 

  135. Pandey N, Kumar A, Chakrabarti S (2019) Investigation of the structural, electronic, and optical properties of Mn-doped CsPbCl 3: theory and experiment. RSC Adv 9(51):29556–29565

    Article  CAS  Google Scholar 

  136. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128(5):2093

    Article  CAS  Google Scholar 

  137. Lamsal C, Ravindra N (2013) Optical properties of vanadium oxides-an analysis. J Mater Sci 48:6341–6351

    Article  CAS  Google Scholar 

  138. Barbillon G (2019) Plasmonics and its Applications. Multidisciplinary Digital Publishing Institute

  139. Dias A et al (2021) Excitonic effects on two-dimensional transition-metal dichalcogenide monolayers: impact on solar cell efficiency. ACS Appl Energy Mater 4(4):3265–3278

    Article  CAS  Google Scholar 

  140. Saha S, Sinha T, Mookerjee A (2000) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Phys Rev B 62(13):8828

    Article  CAS  Google Scholar 

  141. Kumar A, Ahluwalia P (2012) Tunable dielectric response of transition metals dichalcogenides MX2 (M= Mo, W; X= S, Se, Te): Effect of quantum confinement. Phys B 407(24):4627–4634

    Article  CAS  Google Scholar 

  142. Voshell A, Terrones M, Rana M (2018) Review of optical properties of two-dimensional transition metal dichalcogenides. Wide Bandgap Power Energy Devices Appl III(10754):66–83

    Google Scholar 

  143. Sun Y et al (2016) Calculations of energy-loss function for 26 materials. Chin J Chem Phys 29(6):663–670

    Article  CAS  Google Scholar 

  144. Koperski M et al (2017) Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics 6(6):1289–1308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DV acknowledges funding support from the National Science Foundation (NSF) under Grant Number CBET-2110603.

Author information

Authors and Affiliations

Authors

Contributions

YF contributed to investigation, methodology, software, data curation, formal analysis, writing—original draft preparation, ZE contributed to data curation, software, formal analysis, validation, writing—reviewing and editing. ZN contributed to supervision, conceptualization, validation, formal analysis, resources, writing—reviewing and editing. DV contributed to supervision, validation, formal analysis, funding acquisition, writing—reviewing and editing.

Corresponding authors

Correspondence to Zahra Nourbakhsh or Daryoosh Vashaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli, Y., Etesami, Z., Nourbakhsh, Z. et al. Unveiling the properties of transition-metal dichalcogenides: a comprehensive study of WTe2, WSe2, ZrTe2, and NiTe2 in bulk and monolayer forms. J Mater Sci 58, 10023–10042 (2023). https://doi.org/10.1007/s10853-023-08545-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08545-w

Navigation