Skip to main content
Log in

Pressure-dependent mode Grüneisen parameters and their impact on thermal expansion coefficient of zinc-blende InN

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the zinc-blende (zb) III-Ns (BN, GaN, AlN and InN), accurate knowledge of the phonon dispersions [\(\omega_{j} \left( {\vec{\varvec{q}}} \right)] \) and thermodynamical characteristics [e.g., Debye temperature \(\Theta_{{\text{D}}} \left( T \right)\), specific heat \(C_{v} (T\))] are important not only from the academic standpoint but also for designing, evaluating/optimizing and integrating multifunctional devices into the highly demanding micro/nano-electronic circuits. In the quasi-harmonic approximation, our realistic rigid-ion-model calculations of the pressure dependent \(\omega_{j} \left( {\vec{\user2{q}}} \right)\), \(\Theta_{{\text{D}}} \left( T \right) \) and \(C_{v } \left( T \right)\) for zb InN agreed very well with the experimental and first-principles data but are found different from a few simulations available in the literature. Like other cubic BN, GaN and AlN materials, we have perceived no negative thermal expansion (NTE) \(\alpha \left( T \right)\) in the zb InN. Unlike many III–V compound semiconductors, no NTE in zb III-N materials at low temperatures is linked to the weak softening of \(\gamma_{{{\text{TA}}\left( {{\text{X}},{\text{ L}}} \right)}}\) modes with strong directional partial covalent bonding. Variations of \(\alpha \left( T \right)\) in the cubic BN, GaN, AlN and InN have exhibited features much like their \(C_{v } \left( T \right)^{\prime}{\text{s}}\) and revealed superior characteristics from the wurtzite III-N materials with intriguing industrial potentials for thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that supports the findings in this study is available from the author upon reasonable request.

References

  1. Kakarla AB, Kong I (2022) In vitro and in vivo cytotoxicity of boron nitride nanotubes: a systematic review. Nanomaterials 12:2069. https://doi.org/10.3390/nano12122069

    Article  CAS  Google Scholar 

  2. Hayat A, Sohail M, Hamdy MS, Taha TA, AlSalem HS, Alenad AM, Amin MA, Shah R, Palamanit A, Khan J, Nawawi WI, Mane SKB (2022) Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf Interfaces 29:101725

    Article  CAS  Google Scholar 

  3. Gao P, Xiao Y, Wang Y, Li L, Li W, Tao W (2021) Biomedical applications of 2D mono elemental materials formed by group VA and VIA: a concise review. J Nanobiotechnol 19(96):2–23. https://doi.org/10.1186/s12951-021-00825-4

    Article  Google Scholar 

  4. Song P, Fu H, Wang Y, Chen C, Ou P, Rashid RT, Duan S, Song J, Mi Z, Liu X (2021) A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosens Bioelectron 190:113264

    Article  CAS  Google Scholar 

  5. Wu K, Huang S, Wang W, Li G (2021) Recent progress in III-nitride nanosheets: properties, materials and applications. Semicond Sci Technol 36:123002

    Article  CAS  Google Scholar 

  6. Sterling S (2021) Structural studies of boron nitride compounds under extreme conditions, Master’s thesis. University of Ottawa

  7. Chen W-Y, Shi X-L, Zou J, Chen Z-G (2022) Thermoelectric coolers for on-chip thermal management: materials, design, and optimization materials science & engineering R. Mater Sci Eng R 151:10070

    Article  Google Scholar 

  8. Cao T, Shi X-L, Chen Z-G (2023) Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 131:101003

    Article  CAS  Google Scholar 

  9. Peng Q, Sun X, Wang H, Yang Y, Wen X, Huang C, Liu S, De S (2017) Theoretical prediction of a graphene-like structure of indium nitride: a promising excellent material for optoelectronics. Appl Mater Today 7:169–178

    Article  Google Scholar 

  10. Krishna S, Sharma A, Aggarwal N, Husale S, Gupta G (2017) Ultrafast photo response and enhanced photoresponsivity of Indium Nitride based broad band photodetector. Sol Energy Mater Sol Cells 172:376–383

    Article  CAS  Google Scholar 

  11. Zhang W, Chong YM, He B, Bello I, Lee S-T (2014) Cubic boron nitride films: properties and applications. In: Sarin VK, Marie D, Lianes L (eds) Comprehensive hard materials. Elsevier, New York, pp 607–639

    Chapter  Google Scholar 

  12. Ratchford DC, Winta C, Chatzakis J, Chase I, Ellis T, Passler NC, Winterstein J, Dev P, Razdolski I, Matson JR, Nolen JR, Tischler JG, Vurgaftman I, Katz MB, Nepal N, Hardy MT, Hachtel JA, Idrobo J-C, Reinecke TL, Giles AJ, Katzer DS, Bassim ND, Stroud RM, Wolf M, Paarmann A, Caldwell JD (2019) Controlling the infrared dielectric function through atomic-scale heterostructures. ACS Nano 13:6730–6741

    Article  CAS  Google Scholar 

  13. Chen J, Oh S, Nabulsi KN, Johnson H, Wang W, Ryou J-H (2019) Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 57:670–679

    Article  CAS  Google Scholar 

  14. Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos EJG, Li LH (2019) High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv 5:1–8

    Article  CAS  Google Scholar 

  15. Doan TC, Li J, Lin JY, Jiang HX (2016) Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy. Appl Phys Lett 109:122101

    Article  Google Scholar 

  16. Acharya AR (2013) Group III – nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himal Phys 4:22

    Google Scholar 

  17. Eddy CR Jr, Nepal N, Hite JK, Mastro MA (2013) Perspectives on future directions in III-N semiconductor research. J Vac Sci Technol A 31:058501. https://doi.org/10.1116/1.4813687

    Article  CAS  Google Scholar 

  18. Yamada H (2008) Diamond, single crystals of electronic materials. Mater Today. https://doi.org/10.1016/B978-0-08-102096-8.00010-0

    Article  Google Scholar 

  19. Mokhov EN, Wolfson AA (2019) Growth of AlN and GaN crystals by sublimation. Single Cryst Electr Mater. https://doi.org/10.1016/B978-0-08-102096-8.00012-4

    Article  Google Scholar 

  20. Clemente AV, Morales M, Chauvat MP, Dasilva YAR, Poisson MA, Heuken M, Giesen C, Ruterana P (2010) Transmission electron microscopy and XRD investigations of InAlN/GaN thin heterostructures for HEMT applications. Proc of SPIE 7602:76020K-K76021

    Article  Google Scholar 

  21. Tohei T, Kuwabara A, Oba F, Tanaka I (2006) Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys Rev B 73:064304

    Article  Google Scholar 

  22. Zhang XW, Boyen HG, Deyneka N, Ziemann P, Banhart F, Schreck M (2003) Epitaxy of cubic boron nitride on (001) oriented diamond. Nat Mater 2:312

    Article  CAS  Google Scholar 

  23. Geisz JF, Friedman DJ (2002) III–N–V semiconductors for solar photovoltaic applications. Semicond Sci Technol 17:769–777

    Article  CAS  Google Scholar 

  24. Storm DF, Maximenko SI, Lang AC, Nepal N, Feygelson TI, Pate BB, Affouda CA, Meyer DJ (2022) Mg-facilitated growth of cubic boron nitride by ion beam-assisted molecular beam epitaxy. Phys Status Solidi RRL 16:2200036

    Article  CAS  Google Scholar 

  25. Wrigley J, Bradford J, James T, Cheng TS, Thomas J, Mellor CJ, Khlobystov AN, Eaves L, Foxon CT, Novikov SV, Beton PH (2021) Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Mater 8:034001

    Article  CAS  Google Scholar 

  26. Palmese E, Peart MR, Borovac D, Song R, Tansu N, Wierer JJ Jr (2021) Thermal oxidation rates and resulting optical constants of Al0.83In0.17N films grown on GaN. J Appl Phys 129:125105. https://doi.org/10.1063/5.0035711

    Article  CAS  Google Scholar 

  27. Hirama K, Taniyasu Y, Yamamoto H, Kumakura K (2020) Control of n-type electrical conductivity for cubic boron nitride (c-BN) epitaxial layers by Si doping. Appl Phys Lett 116:162104. https://doi.org/10.1063/1.5143791

    Article  CAS  Google Scholar 

  28. Hirama K, Taniyasu Y, Yamamoto H, Kumakura K (2019) Structural analysis of cubic boron nitride (111) films heteroepitaxially grown on diamond (111) substrates. J Appl Phys 125:115303. https://doi.org/10.1063/1.5086966

    Article  CAS  Google Scholar 

  29. Yamaguchi T, Sasaki T, Fujikawa S, Takahasi M, Araki T, Onuma T, Honda T, Nanishi Y (2019) In situ synchrotron X-ray diffraction reciprocal space mapping measurements in the RF-MBE growth of GaInN on GaN and InN. Crystals 9:631. https://doi.org/10.3390/cryst9120631

    Article  CAS  Google Scholar 

  30. Casallas-Moreno YL, Gallardo-Hernández S, Yee-Rendón CM, Ramírez-López M, Guillén-Cervantes A, Arias-Cerón JS, Huerta-Ruelas J, Santoyo-Salazar J, Mendoza-Álvarez JG, López-López M (2019) Growth mechanism and properties of self-assembled InN nanocolumns on Al covered Si(111) substrates by PA-MBE. Materials 12:3203. https://doi.org/10.3390/ma12193203

    Article  CAS  Google Scholar 

  31. Cheng TS, Summerfield A, Mellor CJ, Khlobystov AN, Eaves L, Foxon CT, Beton PH, Novikov SV (2018) High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes. Materials 11:1119. https://doi.org/10.3390/ma11071119

    Article  CAS  Google Scholar 

  32. Kobayashi A, Oseki M, Ohta J, Fujioka H (2018) Epitaxial growth of thick polar and semipolar InN films on Yttria-stabilized zirconia using pulsed sputtering deposition. Phys Status Solidi B 255:1700320

    Article  Google Scholar 

  33. Liang D, Quhe R, Chen Y, Wu L, Wang Q, Guan P, Wang S, Lu P (2017) Electronic and excitonic properties of two dimensional and bulk InN crystals. RSC Adv 7:42455

    Article  CAS  Google Scholar 

  34. Yang C-C, Lo I, Shih C-H, Hu C-H, Wang Y-C, Lin Y-C, Tsai C-D, Huang H-C, Chou MMC, Yu C-C, Jang D-J (2017) Growth and characteristics of high-quality InN by plasma-assisted molecular beam epitaxy. INTECH. https://doi.org/10.5772/65812

    Article  Google Scholar 

  35. Shammas J, Yang Y, Wang X, Koeck FAM, McCartney MR, Smith DJ, Nemanich RJ (2017) Band offsets of epitaxial cubic boron nitride deposited on polycrystalline diamond via plasma-enhanced chemical vapor deposition. Appl Phys Lett 111:17604

    Article  Google Scholar 

  36. Kudyakova VS, Shishkin RA, Elagin AA, Baranov MV, Beketov AR (2017) Aluminium nitride cubic modifications synthesis methods and its features. Rev J Eur Ceram Soc 37:1143–1156. https://doi.org/10.1016/j.jeurceramsoc.2016.11.051

    Article  CAS  Google Scholar 

  37. Simonyan AK, Gambaryan KM, Aroutiounian VM (2017) Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate. Adv Nano Res 5:303–311. https://doi.org/10.12989/anr.2017.5.4.303

    Article  Google Scholar 

  38. Däubler J, Passow T, Aidam R, Köhler K, Kirste L, Kunzer M, Wagner J (2014) Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter. Appl Phys Lett 105:111111. https://doi.org/10.1063/1.4895067

    Article  CAS  Google Scholar 

  39. Iida D, Nagata K, Makino T, Iwaya M, Kamiyama S, Amano H, Akasaki I, Bandoh A, Udagawa T (2010) Growth of GaInN by raised-pressure metalorganic vapor phase epitaxy. Appl Phys Express 3:075601. https://doi.org/10.1143/APEX.3.075601

    Article  CAS  Google Scholar 

  40. Izyumskaya N, Demchenko DO, Das S, Özgür Ü, Avrutin V, Morkoç H (2017) Recent development of boron nitride towards electronic applications. Adv Electron Mater 3:1600485

    Article  Google Scholar 

  41. Terashima W, Che S-B, Ishitani Y, Yoshikawa A (2006) Growth and characterization of AlInN ternary alloys in whole composition range and fabrication of InN/AlInN multiple quantum wells by RF molecular beam epitaxy. Jpn J Appl Phys 45:L539–L542

    Article  CAS  Google Scholar 

  42. Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G, Hinze P (2005) Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. PRL 95:127402

    Article  CAS  Google Scholar 

  43. Farivar R, Andersson TG (2010) Initial boron growth on GaN and AlN surfaces by molecular beam epitaxy. Phys Status Solidi C 7:25–27. https://doi.org/10.1002/pssc.200982610

    Article  CAS  Google Scholar 

  44. Chen JT, Hsiao CL, Hsu HC, Wu CT, Yeh CL, Wei PC, Chen LC, Chen KH (2007) Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source. J Phys Chem A 111:6755–6759

    Article  CAS  Google Scholar 

  45. Fehlberg TB, Membreno GAU, Nener BD, Parish G, Gallinat CS, Koblmüller G, Rajan S, Bernardis S, Speck JS (2006) Characterization of multiple carrier transport in indium nitride grown by molecular beam epitaxy. Jpn J Appl Phys 45:L1090–L1092

    Article  CAS  Google Scholar 

  46. Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K (1994) Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys Rev B 49:14

    Article  CAS  Google Scholar 

  47. Xia H, Xia Q, Ruoff AL (1993) High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. Phys Rev B 47:12925

    Article  CAS  Google Scholar 

  48. Muñoz A, Kunc K (1993) Structure and static properties of indium nitride at low and moderate pressures. J Phys Condens Marter 5:6015–6022

    Article  Google Scholar 

  49. Christensen NE, Gorczyca I (1994) Optical and structural properties of III-V nitrides under pressure. Phys Rev B 50:4397

    Article  CAS  Google Scholar 

  50. Siegel A, Parlinski K, Wdowik UD (2006) Ab initio calculation of structural phase transitions in AlN crystal. Phys Rev B 74:104116

    Article  Google Scholar 

  51. Saib S, Bouarissa N (2007) Structural phase transformations of GaN and InN under high pressure. Phys B 387:377–382

    Article  CAS  Google Scholar 

  52. Serrano J, Rubio A, Hernández E, Muñoz A, Mujica A (2000) Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Phys Rev B 62:16612

    Article  CAS  Google Scholar 

  53. Tabata A, Lima AP, Teles LK, Scolfaro LMR, Leite JR, Lemos V, Schöttker B, Frey T, Schikora D, Lischka K (1999) Structural properties and Raman modes of zinc blende InN epitaxial layers. Appl Phys Lett 74:362. https://doi.org/10.1063/1.123072

    Article  CAS  Google Scholar 

  54. Wang X, Chen S, Lin W, Li S, Chen H, Liu D, Kang J (2011) Structural properties of InN films grown in different conditions by metalorganic vapor phase epitaxy. J Mater Res 26:775

    Article  Google Scholar 

  55. Manjón FJ, Errandonea D, Romero AH, Garro N, Serrano J, Kuball M (2008) Lattice dynamics of wurtzite and rocksalt AlN under high pressure: effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Phys Rev B 77:205204

    Article  Google Scholar 

  56. Cai J, Chen N (2007) Microscopic mechanism of the wurtzite-to-rocksalt phase transition of the group-III nitrides from first principles. Phys Rev B 75:134109

    Article  Google Scholar 

  57. Peng F, Chen D, Fu H, Cheng X (2008) The phase transition and the elastic and thermodynamic properties of AlN: First principles. Phys B 403:4259–4263

    Article  CAS  Google Scholar 

  58. Cheng YC, Wu XL, Zhu J, Xu LL, Li SH, Chu PK (2008) Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations. J Appl Phys 103:073707

    Article  Google Scholar 

  59. Varshney D, Joshi G, Kaurav N, Singh RK (2009) Structural phase transition (zincblende–rocksalt) and elastic properties in AlY (Y = N, P and As) compounds: pressure-induced effects. J Phys Chem Solids 70:451–458

    Article  CAS  Google Scholar 

  60. Wei Z, Yan C, Jun Z, Rong CX (2009) Structural, thermodynamic and electronic properties of zinc-blende AlN from first-principles calculations. Chin Phys B 18:1207

    Article  CAS  Google Scholar 

  61. Xiao HY, Jiang XD, Duan G, Gao F, Zu XT, Weber WJ (2010) First-principles calculations of pressure-induced phase transformation in AlN and GaN. Comput Mater Sci 48:768–772

    Article  CAS  Google Scholar 

  62. Kamimura J, Ramsteiner M, Jahn U, Lu CYJ, Kikuchi A, Kishino K, Riechert H (2016) High-quality cubic and hexagonal InN crystals studied by micro-Raman scattering and electron backscatter diffraction. J Phys D: Appl Phys 49:155106

    Article  Google Scholar 

  63. Ibáñez J, Oliva R, Manján FJ, Segura A, Yamaguchi T, Nanishi Y, Cuscó R, Artús L (2013) High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy. Phys Rev B 88:115202

    Article  Google Scholar 

  64. Callsen G, Wagner MR, Reparaz JS, Nippert F, Kure T, Kalinowski S, Hoffmann A, Ford MJ, Phillips MR, Dalmau RF, Schlesser R, Collazo R, Sitar Z (2014) Phonon pressure coefficients and deformation potentials of wurtzite AlN determined by uniaxial pressure-dependent Raman measurements. Phys Rev B 90:205206

    Article  Google Scholar 

  65. Bayarjargal L, Wiehl L, Winkler B (2013) Influence of grain size, surface energy, and deviatoric stress on the pressure-induced phase transition of ZnO and AlN. High Press Res 33:642–651. https://doi.org/10.1080/08957959.2013.800514

    Article  CAS  Google Scholar 

  66. Sadovyi B, Wierzbowska M, Stelmakh S, Boccato S, Gierlotka S, Irifune T, Porowski S, Grzegory I (2020) Experimental and theoretical evidence of the temperature-induced wurtzite to rocksalt phase transition in GaN under high pressure. Phys Rev B 102:235109

    Article  CAS  Google Scholar 

  67. Reparaz JS, da Silva KP, Romero AH, Serrano J, Wagner MR, Callsen G, Choi S, Speck J, Goñi AR (2018) Comparative study of the pressure dependence of optical-phonon transverse-effective charges and linewidths in wurtzite InN. Phys Rev B 98:165204

    Article  CAS  Google Scholar 

  68. Wright AF (1997) Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J Appl Phys 82:2833. https://doi.org/10.1063/1.366114

    Article  CAS  Google Scholar 

  69. Łopuszyński M, Majewski JA (2007) Ab initio calculations of third-order elastic constants and related properties for selected semiconductors. Phys Rev B 76:045202

    Article  Google Scholar 

  70. Caro MA, Schulz S, O’Reilly EP (2012) Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides. Phys Rev B 86:014117

    Article  Google Scholar 

  71. Samantaray CB, Singh RN (2005) Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Inter Mater Rev 50:313

    Article  CAS  Google Scholar 

  72. Hassan AM, Hamad AS, Mhawsh KA, Lazim ZM (2022) Characteristics of indium nitride thin films deposited on silicon substrates by reactive sputtering with nitride buffer layers, IRAQI. J Appl Phys 18:23–26

    Google Scholar 

  73. Qian ZG, Shen WZ, Ogawa H, Guo QX (2004) Experimental studies of lattice dynamical properties in indium nitride. J Phys Condens Matter 16:R381–R414

    Article  CAS  Google Scholar 

  74. Serrano J, Bosak A, Krisch M, Manjo’n FJ, Romero AH, Garro N, Wang X, Yoshikawa A, Kuball M (2011) InN thin film lattice dynamics by grazing incidence inelastic X-ray scattering. Phys Rev Lett 106:205501

    Article  CAS  Google Scholar 

  75. Usman Z, Cao C, Mahmood T (2013) Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zinc blende InN. Phys B 430:67–73

    Article  CAS  Google Scholar 

  76. Hou H-J, Zhu S-F, Zhao B-J, Yu Y, Zhang S-R, Xie L-H (2012) The structural, elastic and thermodynamical properties of zinc-blend structure InN from first principles. Phys B 407:408–411

    Article  CAS  Google Scholar 

  77. Hattabi I, Abdiche A, Naqib SH, Khenata R (2019) First-principles calculations of elastic and thermodynamic properties under hydrostatic pressure of cubic InNxP1-x ternary alloys. Chin J Phys 59:449–464

    Article  CAS  Google Scholar 

  78. Yan ZW, Ban SL, Liang XX (2003) Effect of electron-phonon interaction on surface states in zinc-blende GaN, AlN, and InN under pressure. Eur Phys J B 35:41–47. https://doi.org/10.1140/epjb/e2003-00254-8

    Article  CAS  Google Scholar 

  79. Scharoch P, Winiarski MJ, Polak MP (2014) Ab initio study of InxGa1-xN Performance of the alchemical mixing approximation. Comput Mater Sci 81:358–365

    Article  CAS  Google Scholar 

  80. Saib S, Bouarissa N, Rodríguez-Hernández P, Muñoz A (2007) Ab initio lattice dynamics of zinc-blende GaxIn1−xN alloys. J Phys Condens Matter 19:486209

    Article  Google Scholar 

  81. Bechstedt F, Grossner U, Furthmüller J (2000) Dynamics and polarization of group-III nitride lattices: a first-principles study. Phys Rev B 62:8003

    Article  CAS  Google Scholar 

  82. Bungaro C, Rapcewicz K, Bernholc J (2000) Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys Rev B 61:6720

    Article  CAS  Google Scholar 

  83. Tütüncü HM, Srivastava GP (2000) Phonons in zinc-blende and wurtzite phases of GaN, AlN, and BN with the adiabatic bond-charge model. Phys Rev B 62:5028

    Article  Google Scholar 

  84. Tütüncü HM, Srivastava GP, Duman S (2002) Lattice dynamics of the zinc-blende and wurtzite phases of nitrides. Phys B 316–317:190–194

    Article  Google Scholar 

  85. Shinde S, Pandya A, Jha PK (2010) Pressure dependent lattice specific heat and mode Grüneisen parameters for group III nitrides. AIP Conf Proc 1249:174. https://doi.org/10.1063/1.3466550

    Article  CAS  Google Scholar 

  86. Panchal JM, Joshi M, Gajjar PN (2016) High pressure structural, electronic and vibrational properties of InN and InP. Phase Transit 89(3):283–309

    Article  CAS  Google Scholar 

  87. Saib S, Bouarissa N, Rodríguez-Hernández P, Muñoz A (2008) First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN. J Appl Phys 103:013506

    Article  Google Scholar 

  88. Sedmidubsk D, Leitner J, Svoboda P, Sofera Z, Macháček J (2009) Heat Capacity and Phonon Spectra of AIIIN- Experiment and Calculation. J Therm Anal Calorim 95:403–407

    Article  Google Scholar 

  89. Xu L, Wang R-Z, Yang X, Yan H (2011) Thermal expansions in wurtzite AlN, GaN, and InN: first-principles phonon calculations. J Appl Phys 110:043528

    Article  Google Scholar 

  90. Wang S (2009) Studies on thermodynamic properties of III–V compounds by first-principles response-function calculation. Phys Status Solidi B 246:1618–1627. https://doi.org/10.1002/pssb.200844379

    Article  CAS  Google Scholar 

  91. Reeber RR, Wang K (2001) Thermal expansion and elastic properties of InN. Appl Phys Lett 79:1602. https://doi.org/10.1063/1.1400082

    Article  CAS  Google Scholar 

  92. Weinstein BA (2021) Pressure-softening of zone-edge TA phonons and the fourfold to sixfold phase change. Phys Rev B 104:054105

    Article  CAS  Google Scholar 

  93. Paszkowicz W, Adamczyk J, Krukowski S, Leszczyński M, Porowski S, Sokolowski JA, Michalec M, Łasocha W (1999) Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium. Philos Mag A 79(5):1145–1154. https://doi.org/10.1080/01418619908210352

    Article  CAS  Google Scholar 

  94. Gu MX, Pan LK, Yeung TCA, Tay BK, Sun CQ (2007) Atomistic origin of the thermally driven softening of Raman optical phonons in group III nitrides. J Phys Chem C 111:13606–13610

    Article  CAS  Google Scholar 

  95. Kunc K (1973) Dynamique de réseau de composés ANB8-N présentant la structure de la blende. Ann Phys 8:319

    Article  CAS  Google Scholar 

  96. Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 49:235

    Article  Google Scholar 

  97. Plumelle P, Vandevyver M (1976) Lattice dynamics of ZnTe and CdTe. Phys Stat Sol 73:271

    Article  CAS  Google Scholar 

  98. Barron THK (1957) Grüneisen parameters for the equation of state of solids. Ann Phys 1:77

    Article  CAS  Google Scholar 

  99. Yu DV, Emtsev VV, Goncharuk IN, Smirnov AN, Petrikov VD, Mamutin VV, Vekshin VA, Ivanov SV, Smirnov MB, Inushima T (1999) Experimental and theoretical studies of phonons in hexagonal InN. Appl Phys Lett 75:3297

    Article  Google Scholar 

  100. Pässler R (2010) parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors. Phys Status Solidi (b) 247:77–92. https://doi.org/10.1002/pssb.200945158

    Article  CAS  Google Scholar 

  101. Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wróblewski M, Presz A, Gierlotka A, Stelmach S, Palosz B, Porowski S, Zinnt P (1998) Thermal properties of indium nitride. J Phys Chem Solids 59:289–295

    Article  CAS  Google Scholar 

  102. Yaddanapudi K (2018) First-principles study of structural phase transformation and dynamical stability of cubic AlN semiconductors. AIP Adv 8:125006

    Article  Google Scholar 

  103. Sheleg AU, Savastenko VA (1976) Izv. Akad. Nauk. BSSR. Ser Fiz Mat Nauk 3:126

    Google Scholar 

  104. Khludkov SS, Prudaev IA, Tolbanov OP (2014) Physical properties of indium nitride, impurities, and defects. Russ Phys J 56:997

    Article  CAS  Google Scholar 

  105. Talwar DN (2017) On the pressure-dependent phonon characteristics and anomalous thermal expansion coefficient of 3C-SiC. Mater Sci Eng, B 226:1–9

    Article  CAS  Google Scholar 

  106. Talwar DN, Vandevyver M (1990) Pressure-dependent phonon properties of III-V compound semiconductors. Phys Rev B 41:11293

    Article  Google Scholar 

  107. Chen X, Li C, Tian F, Gamage GA, Sullivan S, Zhou J, Broido D, Ren Z, Shi L (2019) Thermal expansion coefficient and lattice anharmonicity of cubic boron arsenide. Phys Rev Appl 11:064070

    Article  CAS  Google Scholar 

  108. Landolt-Bornstein (2014) New data and updates for several IIa-VI compounds. In: Rossler U (ed) Structural properties, thermal and thermodynamical properties, and lattice properties. Springer, Berlin

    Google Scholar 

  109. Pinquier C, Demangeot F, Frandon J, Pomeroy JW, Kuball M, Hubel H, van Uden NWA, Dunstan DJ, Briot O, Maleyre B, Ruffenach S, Gil B (2004) Raman scattering in hexagonal InN under high pressure. Phys Rev B 70:113202

    Article  Google Scholar 

  110. O’Leary SK, Foutz BE, Shur MS, Eastman LF (2005) Steady-state and transient electron transport within bulk wurtzite indium nitride: an updated semiclassical three-valley Monte Carlo simulation analysis. Appl Phys Lett 87:222103

    Article  Google Scholar 

  111. Chang Y-K, Hong FC-N (2009) Synthesis and characterization of indium nitride nanowires by plasma-assisted chemical vapor deposition. Mater Lett 63:1855–1858

    Article  CAS  Google Scholar 

  112. Siddiqua P, Hadi WA, Shur MS, O’Leary SK (2015) A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review. J Mater Sci Mater Electron 26:4475–4512. https://doi.org/10.1007/s10854-015-3055-7

    Article  CAS  Google Scholar 

  113. Duan XM, Stampfl C (2009) Vacancies and interstitials in indium nitride: Vacancy clustering and molecular bond like formation from first principles. Phys Rev B 78:174202

    Article  Google Scholar 

  114. Xie M-Y, Schubert M, Lu J, Persson POǺ, Stanishev V, Hsiao CL, Chen LC, Schaff WJ, Darakchieva V (2014) Assessing structural, free-charge carrier, and phonon properties of mixed-phase epitaxial films: the case of InN. Phys Rev B 90:195306

    Article  Google Scholar 

  115. Kröncke H, Figge S, Epelbaum BM, Hommel D (2008) Determination of the temperature dependent thermal expansion coefficients of bulk AlN by HRXRD. Acta Phys Pol A 114:1193–1200

    Article  Google Scholar 

  116. Sevik C (2014) Assessment on lattice thermal properties of two-dimensional honeycomb structures: graphene, h-BN, h-MoS2, and h-MoSe2 Phys. Rev B 89:035422

    Article  Google Scholar 

  117. Karaaslan Y, Yapicioglu H, Sevik C (2020) Assessment of thermal transport properties of group-III nitrides: a classical molecular dynamics study with transferable tersoff-type interatomic potentials. Phys Rev Appl 13:034027

    Article  CAS  Google Scholar 

  118. Sarikurt S, Abdullahi YZ, Durgun E, Ersan F (2022) Negative thermal expansion of group III-Nitride monolayers. J Phys D: Appl Phys 55:315303

    Article  Google Scholar 

  119. Zhong Y, Zhang L, Park J-H, Cruz S, Li L, Liang Guo L, Kong J, Wan EN (2022) A unified approach and descriptor for the thermal expansion of two-dimensional transition metal dichalcogenide monolayers. Sci Adv 8:eabo3783

    Article  CAS  Google Scholar 

  120. Faraji M, Bafekry A, Fadlallah MM, Jappor HR, Nguyen CV, Ghergherehchi M (2022) Two-dimensional XY monolayers (X = Al, Ga, In; Y = N, P, As) with a double layer hexagonal structure: A first-principles perspective Two-dimensional XY monolayers (X = Al, Ga, In; Y = N, P, As) with a double layer hexagonal structure: A first-principles perspective. Appl Surf Sci 590:152998

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (DNT) is thankful to Dr. Deanne Snavely, the Dean of the College of Natural Sciences and Mathematics (C-NSM) at Indiana University of Pennsylvania (IUP) for the travel support and to the IUP Graduate school for the award of an Innovation grant.

Funding

No funding is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devki N. Talwar.

Ethics declarations

Conflict of interest

The author has no financial conflicts to disclose or personal relationship that could have appeared to influence the work reported in this paper.

Ethical approval

No human tissues were involved in this study.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, D.N. Pressure-dependent mode Grüneisen parameters and their impact on thermal expansion coefficient of zinc-blende InN. J Mater Sci 58, 8379–8397 (2023). https://doi.org/10.1007/s10853-023-08477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08477-5

Navigation