Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of dense ZTA ceramics with high Cr2O3 solution

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconia toughened alumina (ZTA) ceramics are commonly used in various industries. Adding suitable additives is an effective way to improve the performance of ZTA ceramics. However, the common reinforcement in ZTA, chromia (Cr2O3), tends to volatilize at high temperature in the presence of oxygen, limiting ceramic densification. Consequently, additional amounts of Cr2O3 are typically limited to below 1 wt%. In this study, spark plasma sintering was utilized to inhibit the volatilization of Cr2O3. Dense ZTA ceramics with high Cr2O3 content (from 1 to 10 wt%) were prepared at 1350 °C. The impact of the solid solution on the structure and properties of the ceramics was investigated. The findings demonstrate that the high Cr2O3 solution can regulate the grain size in the matrix, leading to an enhancement in both hardness and fracture toughness. The optimum performance of the sample was obtained with a 5 wt% dosage of Cr2O3, where the maximum values of Vickers hardness and fracture toughness were 20.66 GPa and 6.37 MPa m1/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Mangalaraja RV, Chandrasekhar BK, Manohar P (2003) Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina. Mater Sci Eng A 343:71–75. https://doi.org/10.1016/S0921-5093(02)00368-4

    Article  Google Scholar 

  2. Chantikul P, Bennison SJ, Lawn BR (1990) Role of grain size in the strength and r-curve properties of alumina. J Am Ceram Soc 73(8):2419–2427. https://doi.org/10.1111/j.1151-2916.1990.tb07607.x

    Article  CAS  Google Scholar 

  3. Ruys AJ (2018) Alumina ceramics: biomedical and clinical applications. Woodhead Publishing, Sawston, pp 71–121

    Google Scholar 

  4. Basu B (2005) Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev 50(4):239–256. https://doi.org/10.1179/174328005X41113

    Article  CAS  Google Scholar 

  5. Gafur MA, Al-Amin M, Sarker MSR, Alam MZ (2021) Structural and mechanical properties of alumina-zirconia (ZTA) composites with unstabilized zirconia modulation. Mater Sci Appl 12(11):542–560. https://doi.org/10.4236/msa.2021.1211036

    Article  CAS  Google Scholar 

  6. Gafur MA, Sarker MSR, Alam MZ, Qadir MR (2017) Effect of 3 mol% yttria stabilized zirconia addition on structural and mechanical properties of alumina-zirconia composites. Mater Sci Appl 8(7):584–602. https://doi.org/10.4236/msa.2017.87041

    Article  CAS  Google Scholar 

  7. Tan P, Yang Y, Sui Y (2020) Influence of CeO2 addition on the microstructure and mechanical properties of zirconia-toughened alumina (ZTA) composite prepared by spark plasma sintering. Ceram Int 46(6):7510–7516. https://doi.org/10.1016/j.ceramint.2019.11.249

    Article  CAS  Google Scholar 

  8. Teow HL, Sivanesan SK, Noum SYE (2020) Effect of Fe2O3 on the densification behaviour and mechanical properties of zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering. In AIP conference proceedings, vol 2233 No 1 p 020029. Doi: https://doi.org/10.1063/5.0001622

  9. Lin HT, Nayak PK, Liu BZ (2012) Mechanical properties of Al2O3–Cr2O3/Cr3C2 nanocomposite fabricated by spark plasma sintering. J Eur Ceram Soc 32(1):77–83. https://doi.org/10.1016/j.jeurceramsoc.2011.07.029

    Article  CAS  Google Scholar 

  10. Riu DH, Kong YM, Kim HE (2000) Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. J Eur Ceram Soc 20(10):1475–1481. https://doi.org/10.1016/S0955-2219(00)00023-6

    Article  CAS  Google Scholar 

  11. Bondioli F, Ferrari AM, Leonelli C, Manfredini T, Linati L, Mustarelli P (2000) Reaction mechanism in alumina/chromia (Al2O3-Cr2O3) solid solutions obtained by coprecipitation. J Am Ceram 83(8):2036–2040. https://doi.org/10.1111/j.1151-2916.2000.tb01508.x

    Article  CAS  Google Scholar 

  12. Bradt RC (1967) Cr2O3 solid solution hardening of Al2O3. J Am Ceram Soc 50(1):54–55. https://doi.org/10.1111/j.1151-2916.1967.tb14972.x

    Article  CAS  Google Scholar 

  13. Singh BK, Mondal B, Mandal N (2016) Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceram Int 42(2):3338–3350. https://doi.org/10.1016/j.ceramint.2015.10.128

    Article  CAS  Google Scholar 

  14. Xia JF, Nian HQ, Liu W, Wang XG, Jiang DY (2016) Effect of Cr2O3 derived from Cr (NO3)3·9H2O precursor on the densification and mechanical properties of zirconia-toughened alumina (ZTA) composites. Ceram Int 42(7):9116–9124. https://doi.org/10.1016/j.ceramint.2016.02.176

    Article  CAS  Google Scholar 

  15. Hirata T, Akiyama K, Yamamoto H (2000) Sintering behavior of Cr2O3–Al2O3 ceramics. J Eur Ceram Soc 20(2):195–199. https://doi.org/10.1016/S0955-2219(99)00161-2

    Article  CAS  Google Scholar 

  16. Jacob KT, Raj S, Rannesh L (2007) Vegard’s law: a fundamental relation or an approximation? Int J Mater Res 98(9):776–779. https://doi.org/10.3139/146.101545

    Article  CAS  Google Scholar 

  17. Zhao P, Zhao H, Yu J, Zhang H, Gao H, Chen Q (2018) Crystal structure and properties of Al2O3-Cr2O3 solid solutions with different Cr2O3 contents. Ceram Int 44(2):1356–1361. https://doi.org/10.1016/j.ceramint.2017.08.195

    Article  CAS  Google Scholar 

  18. Niihara K (1983) A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J Mater Sci Lett 2(5):221–223. https://doi.org/10.1007/bf00725625

    Article  CAS  Google Scholar 

  19. Cui K, Zhang Y, Fu T, Hussain S, Saad Algarni T, Wang J, Ali S (2021) Effects of Cr2O3 content on microstructure and mechanical properties of Al2O3 matrix composites. Coatings 11(2):234. https://doi.org/10.3390/coatings11020234

    Article  CAS  Google Scholar 

  20. Ranga Rao G, Sahu HR (2001) XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. J Chem Sci 113(5):651–658. https://doi.org/10.1007/BF02708797

    Article  Google Scholar 

  21. Michaelsen C (1995) On the structure and homogeneity of solid solutions: the limits of conventional X-ray diffraction. Philos Mag A 72(3):813–828. https://doi.org/10.1080/01418619508243802

    Article  CAS  Google Scholar 

  22. Vasilos T, Spriggs RM (1963) Pressure sintering: mechanisms and microstructures for alumina and magnesia. J Am Ceram Soc 46(10):493–496. https://doi.org/10.1111/j.1151-2916.1963.tb13781.x

    Article  CAS  Google Scholar 

  23. Coble RL (1961) Sintering crystalline solids. I. Intermediate and final state diffusion models. J Appl Phys 32(5):787–792. https://doi.org/10.1063/1.1736107

    Article  CAS  Google Scholar 

  24. Wang XG, Liu JX, Kan YM, Zhang GJ (2012) Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M¼V, Nb, and Ta) additions. J Eur Ceram Soc 32(8):1795–1802. https://doi.org/10.1016/j.jeurceramsoc.2011.10.045

    Article  CAS  Google Scholar 

  25. Huang SG, Vanmeensel K, Li L, Van der Biest O, Vleugels J (2008) Tailored sintering of VC-doped WC-Co cemented carbides by pulsed electric current sintering. Int J Refract Met Hard Mater 26(3):256–262. https://doi.org/10.1016/j.ijrmhm.2007.04.001

    Article  CAS  Google Scholar 

  26. Sktani ZDI, Rejab NA, Ratnam MM, Ahmad ZA (2018) Fabrication of tougher ZTA ceramics with sustainable high hardness through (RSM) optimisation. Int J Refract Met Hard Mater 74:78–86. https://doi.org/10.1016/j.ijrmhm.2018.03.006

    Article  CAS  Google Scholar 

  27. Nevarez-Rascon A, Aguilar-Elguezabal A, Orrantia E, Bocanegra-Bernal MH (2009) On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int J Refract Met Hard Mater 27(6):962–970. https://doi.org/10.1016/j.ijrmhm.2009.06.001

    Article  CAS  Google Scholar 

  28. Meunier C, Zuo F, Peillon N, Saunier S, Marinel S, Goeuriot D (2017) In situ study on microwave sintering of ZTA ceramic: Effect of ZrO2 content on densification, hardness, and toughness. J Am Ceram Soc 100(3):929–936. https://doi.org/10.1111/jace.14658

    Article  CAS  Google Scholar 

  29. Casellas D, Nagl MM, Llanes L, Anglada M (2003) Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol 143:148–152. https://doi.org/10.1016/S0924-0136(03)00396-0

    Article  CAS  Google Scholar 

  30. Rejab NA, Azhar AZA, Ratnam MM, Ahmad ZA (2013) The relationship between microstructure and fracture toughness of zirconia toughened alumina (ZTA) added with MgO and CeO2. Int J Refract Met Hard Mater 41:522–530. https://doi.org/10.1016/j.ijrmhm.2013.07.002

    Article  CAS  Google Scholar 

  31. Sktani ZDI, Rejab NA, Rosli AFZ, Arab A, Ahmad ZA (2021) Effects of La2O3 addition on microstructure development and physical properties of harder ZTA-CeO2 composites with sustainable high fracture toughness. J Rare Earths 39(7):844–849. https://doi.org/10.1016/j.jre.2020.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (2021B0707050001); Chaozhou City, the second batch of special plans for science and technology (202202ZD01); Guangdong Major Project of Basic and Applied Basic Research (2021B0301030001); National Key R&D Program of China (2021YFB3802300); Chaozhou Science and Technology Project (2019PT01), Self-innovation Research Funding Project of Hanjiang Laboratory (HJL202012A001, HJL202012A002, HJL202012A003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhong, X., Luo, G. et al. Microstructure and mechanical properties of dense ZTA ceramics with high Cr2O3 solution. J Mater Sci 58, 7868–7879 (2023). https://doi.org/10.1007/s10853-023-08464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08464-w

Navigation