Skip to main content
Log in

Synergistic enhancement of mechanical properties and impact resistance of polyurethane elastomers by composite fillers containing quadruple hydrogen bonds and nano-CaCO3

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inorganic filler-filled polyurethane elastomer (PUE) is faced with problems such as cracking and functional structure failure under high-speed impact, which limits its application in the field of protection. Inspired by the secondary electrostatic effect of quadruple hydrogen bonds, a polymer containing quadruple hydrogen bonds (PHI) was composited with nano-CaCO3 to prepare a nano-reinforced filler (PUE-QHB@CaCO3). The composition, morphology and microstructure of the nano-reinforced filler were systemly characterized, and it was used to improve impact resistance and energy absorption of PUE. Compared with pure PUE, 4 wt% PUE-QHB@CaCO3 composite PUE simultaneously improves the maximum compressive modulus (190.70%), elastic modulus (186.81%), dynamic strength (24.32%) and energy absorption (23.33%) and reduces thermal weight loss rate (137.58%). The excellent mechanical properties exhibited by PUE-QHB@CaCO3 are not only attributed to the rigidity provided by nano-CaCO3 and the flexibility of PHI, but to the synergistic enhancement effect of the two in PUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Chunyu Z (2021) Dynamic behavior of impact hardening elastomer: a flexible projectile material with unique rate-dependent performance. Composites 143:106285–102021. https://doi.org/10.1016/j.compositesa.2021. (From national agricultural library PubAg)

    Article  Google Scholar 

  2. Liyun Y (2017) ZnO as a cheap and effective filler for high breakdown strength elastomers. RSC adv 7(72):45784–45791. https://doi.org/10.1039/c7ra09479e. (From National Agricultural Library PubAg)

    Article  CAS  Google Scholar 

  3. Wang Q, Zhang J, Wang X, Wang Z (2020) Significant enhancement of notched Izod impact strength of PLA-based blends through encapsulating PA11 particles of low amounts by EGMA elastomer. Appl Surf Sci 526:146657–146668. https://doi.org/10.1016/j.apsusc.2020.146657

    Article  CAS  Google Scholar 

  4. Cao X, James Lee L, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46(3):775–783. https://doi.org/10.1016/j.polymer.2004.11.028

    Article  CAS  Google Scholar 

  5. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Constr Build Mater 190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

    Article  CAS  Google Scholar 

  6. Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res 3(3):93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  7. Simić DM, Stojanović DB, Dimić M, Mišković K, Marjanović M, Burzić Z, Uskoković PS, Zak A, Tenne R (2019) Impact resistant hybrid composites reinforced with inorganic nanoparticles and nanotubes of WS2. Compos Part B Eng 176:107222–107231. https://doi.org/10.1016/j.compositesb.2019.107222

    Article  CAS  Google Scholar 

  8. Lai QY, Yuhana NY, Fariz S, Otoh MZ (2020) The mechanical and thermal properties of polyurethanes/precipitated calcium carbonate composites. IOP Conf Ser Mater Sci Eng 943(1):012018–012029. https://doi.org/10.1088/1757-899X/943/1/012018

    Article  CAS  Google Scholar 

  9. Ye S, Wang B, Shi Y, Wang B, Zhang Y, Feng Y, Han W, Liu C, Shen C (2020) Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Compos Commun 21:100378–100386. https://doi.org/10.1016/j.coco.2020.100378

    Article  Google Scholar 

  10. Xu S, Zhao B, Raza M, Li L, Wang H, Zheng S (2020) Shape memory and self-healing nanocomposites with poss–poss interactions and quadruple hydrogen bonds. ACS Appl Polym Mater 2(8):3327–3338. https://doi.org/10.1021/acsapm.0c00446

    Article  CAS  Google Scholar 

  11. Sun N, Di M, Liu Y (2021) Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. Int J Biol Macromol 184:1–8. https://doi.org/10.1016/j.ijbiomac.2021.06.038

    Article  CAS  Google Scholar 

  12. He H, Zhang Z, Wang J, Li K (2013) Compressive properties of nano-calcium carbonate/epoxy and its fibre composites. Compos B Eng 45(1):919–924. https://doi.org/10.1016/j.compositesb.2012.09.050

    Article  CAS  Google Scholar 

  13. Fang Q, Song B, Tee T-T, Sin LT, Hui D, Bee S-T (2014) Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate. Compos B Eng 60:561–567. https://doi.org/10.1016/j.compositesb.2014.01.010

    Article  CAS  Google Scholar 

  14. Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Process Technol 209(3):1310–1317. https://doi.org/10.1016/j.jmatprotec.2008.03.066

    Article  CAS  Google Scholar 

  15. Schmuck C, Wienand W (2001) Self-complementary quadruple hydrogen-bonding motifs as a functional principle: from dimeric supramolecules to supramolecular polymers. Angew Chem Int Edi 40(23):4363–4369. https://doi.org/10.1002/1521-3773(20011203)40:23%3c4363::AID-ANIE4363%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  16. Zhu B, Feng Z, Zheng Z, Wang X (2012) Thermoreversible supramolecular polyurethanes with self-complementary quadruple hydrogen-bonded end groups. J Appl Polym Sci 123(3):1755–1763. https://doi.org/10.1002/app.34638

    Article  CAS  Google Scholar 

  17. Feng T, Xiuhong L, Yuzhu W, Chunming Y, Ping Z, Jinyou L, Jianrong Z, Chunxia H, Wenqiang H, Xiaoyun L et al (2015) Small angle X-ray scattering beamline at SSRF. Nucl Sci Tech 26(3):6

    Google Scholar 

  18. Albrecht T, Strobl G (1996) Observation of the early stages of crystallization in polyethylene by time-dependent SAXS: transition from individual crystals to stacks of lamellae. Macromolecules 29(2):783–785. https://doi.org/10.1021/ma9503524

    Article  CAS  Google Scholar 

  19. Denchev Z, Nogales A, Ezquerra TA, Fernandes-Nascimento J, Baltà-Calleja FJ (2000) On the origin of the multiple melting behavior in poly(ethylene naphthalene-2,6-dicarboxylate) microstructural study as revealed by differential scanning calorimetry and X-ray scattering. J Polym Sci Part B Polym Phys 38(9):1167–1182. https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9%3c1167::AID-POLB8%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  20. Sun Y-S (2006) Temperature-resolved SAXS studies of morphological changes in melt-crystallized poly(hexamethylene terephthalate) and its melting upon heating. Polymer 47(23):8032–8043. https://doi.org/10.1016/j.polymer.2006.09.003

    Article  CAS  Google Scholar 

  21. International Organization for Standardization (2002) International standard: plastics-determination of compressive properties, ISO 604, Geneva

  22. Xu J, Wang P, Pang H, Wang Y, Wu J, Xuan S, Gong X (2018) The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Compos Sci Technol 159:50–58. https://doi.org/10.1016/j.compscitech.2018.02.030

    Article  CAS  Google Scholar 

  23. Pandya KS, Naik NK (2015) Energy absorption capability of carbon nanotubes dispersed in resins under compressive high strain rate loading. Compos B Eng 72:40–44. https://doi.org/10.1016/j.compositesb.2014.11.026

    Article  CAS  Google Scholar 

  24. Wu X, Wang J, Huang J, Yang S (2019) Robust, stretchable, and self-healable supramolecular elastomers synergistically cross-linked by hydrogen bonds and coordination bonds. ACS Appl Mater Interfaces 11(7):7387–7396. https://doi.org/10.1021/acsami.8b20303

    Article  CAS  Google Scholar 

  25. Hu J, Mo R, Jiang X, Sheng X, Zhang X (2019) Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183:121912–121923. https://doi.org/10.1016/j.polymer.2019.121912

    Article  CAS  Google Scholar 

  26. Sun M, Ren X, Zhang J, Zhang X, Wang H (2019) Preparation and characterization of one-component polyurethane powder adhesives by the solution polymerization technology. J Appl Polym Sci 136(35):47898–47907. https://doi.org/10.1002/app.47898

    Article  CAS  Google Scholar 

  27. Shirsath SR, Bhanvase BA, Sonawane SH, Gogate PR, Pandit AB (2017) A novel approach for continuous synthesis of calcium carbonate using sequential operation of two sonochemical reactors. Ultrason Sonochem 35:124–133. https://doi.org/10.1016/j.ultsonch.2016.09.009

    Article  CAS  Google Scholar 

  28. Freischmidt G, Michell AJ (1991) Performance of zircoaluminate coupling agents in wood flour/fibre-polyolefin composites. Polym Int 24(4):241–247. https://doi.org/10.1002/pi.4990240407

    Article  CAS  Google Scholar 

  29. Liu J, Chen R, Wang C, Zhao Y, Chu F (2019) Synthesis and characterization of polyethylene glycol-phenol-formaldehyde based polyurethane composite. Sci Rep 9(1):19545–19554. https://doi.org/10.1038/s41598-019-56147-x

    Article  CAS  Google Scholar 

  30. Asensio M, Costa V, Nohales A, Bianchi O, Gómez CM (2019) Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers 11(12):1910. https://doi.org/10.3390/polym11121910. (From EBSCOhost academic search ultimate)

    Article  CAS  Google Scholar 

  31. Wang Z, Liu Z, Gao Z, Li X, Eling B, Pöselt E, Schander E, Wang Z (2022) Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. Polymer 254:125072–125083. https://doi.org/10.1016/j.polymer.2022.125072

    Article  CAS  Google Scholar 

  32. Mo J, Leung N, Gupta P, Zhu B, Xing H, Zhang J, Velliou E, Sui T (2021) Multi-scale structural and mechanical characterisation in bioinspired polyurethane-based pancreatic cancer model. J Mar Res 15:2507–2517. https://doi.org/10.1016/j.jmrt.2021.09.041

    Article  CAS  Google Scholar 

  33. Heydarnezhad HR, Mohammadi N, Alegria A (2021) Non-einstein rheology in segmented polyurethane nanocomposites. Macromolecules 54(6):2783–2796. https://doi.org/10.1021/acs.macromol.0c02503

    Article  CAS  Google Scholar 

  34. Bahramnia H, Semnani HM, Habibolahzadeh A, Abdoos H (2021) Epoxy/polyurethane hybrid nanocomposite coatings reinforced with MWCNTs and SiO2 nanoparticles: processing, mechanical properties and wear behavior. Surf Coat Technol 415:127121–127135. https://doi.org/10.1016/j.surfcoat.2021.127121

    Article  CAS  Google Scholar 

  35. Zheng C, Cheng Y, Wei Q, Li X, Zhang Z (2017) Suspension of surface-modified nano-SiO2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery. Colloids Surf A 524:169–177. https://doi.org/10.1016/j.colsurfa.2017.04.026

    Article  CAS  Google Scholar 

  36. Wan Y-J, Li G, Yao Y-M, Zeng X-L, Zhu P-L, Sun R (2020) Recent advances in polymer-based electronic packaging materials. Compos Commun 19:154–167. https://doi.org/10.1016/j.coco.2020.03.011

    Article  Google Scholar 

  37. Tang L-C, Zhang H, Han J-H, Wu X-P, Zhang Z (2011) Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos Sci Technol 72(1):7–13. https://doi.org/10.1016/j.compscitech.2011.07.016

    Article  CAS  Google Scholar 

  38. Wang F, Zhang K, Liang W, Wang Z, Tay TE, Lu S, Yang B (2020) Epoxy/CNT@X nanocomposite: improved quasi-static, dynamic fracture toughness, and conductive functionalities by non-ionic surfactant treatment. Polym Test 81:106256–106271. https://doi.org/10.1016/j.polymertesting.2019.106256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (12275231) and Hunan Provincial Natural Science Foundation of China (2020JJ4086). The authors thank the colleagues at SAXS beamlines (BL16B,BL19U) of Shanghai Synchrotron Radiation Facility for support and discussions; National Natural Science Foundation of China (52271117), Educational Commission of Hunan Province of China (20B579), High Technology Research and Development Program of Hunan Province of China (2022GK4038)

Author information

Authors and Affiliations

Authors

Contributions

ZZ and FQ contributed equally. ZZ was involved in writing—original draft, data curation, formal analysis, and investigation. FQ contributed to validation and investigation. XS was involved in data curation and software. BZ contributed to supervision, writing—review & editing. NZ was involved in visualization, validation, supervision, and writing—review & editing. FQ contributed to conceptualization, supervision. XO was involved in project administration and supervision. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Nie Zhao or Biao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Qi, F., Sun, X. et al. Synergistic enhancement of mechanical properties and impact resistance of polyurethane elastomers by composite fillers containing quadruple hydrogen bonds and nano-CaCO3. J Mater Sci 58, 3582–3596 (2023). https://doi.org/10.1007/s10853-023-08198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08198-9

Navigation