Skip to main content

Advertisement

Log in

Size does matter: antibacterial activities and cytotoxic evaluation of polymorphic CuO nanostructures

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured materials play a significant role in antibacterial activities. However, understanding the geometrical influence at the nanoscale in terms of size- and shape-correlated physical properties on antibacterial activities is very essential. Herein, we report the antibacterial influence of various copper oxide nanostructures (CuO NS) such as nanoparticles (NPs) (< 10 nm), nanospheres (NSs) (50–100 nm), and porous nanoflowers (NFs) (≈ 350 nm). The XRD confirmed the crystalline nature of CuO NPs without impurities. The antibacterial activities of CuO NPs were investigated by the microplate dilution method and confocal laser scanning microscopic (CLSM) imaging. NPs having a diameter less than 10 nm exhibited significant damage to the bacterial cell membrane than NSs and NFs. Interestingly, NPs illustrated relatively low antibacterial activity against Gram-negative bacteria (Pseudomonas aeruginosa and Acinetobacter baumannii) than Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis). Acinetobacter baumannii was found to be more susceptible to the NPs than other bacterial strains, attributed to its increased membrane permeability. The death phase was observed at a concentration of 15.6 µg mL−1 and 3.9 µg mL−1 for P. aeruginosa and A. baumannii, respectively, when treated with CuO NP after the 8 h of incubation. Similarly, for S. aureus and S. epidermidis, the death phase was observed at the concentration of 31.2 µg mL−1 and 250 µg mL−1, respectively. Furthermore, as the cell cytotoxicity measurements against human fibroblast L9239 cells revealed that CuO NPs were safe. The morphological and cell viability assay demonstrated 100% cell survival, when treated with NPs and NSs (5, 10, and 25 µg mL−1), signifies no cytotoxicity. Therefore, CuO nanoparticles can be used for clinical and therapeutic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Church NA, McKillip JL (2021) Antibiotic resistance crisis: challenges and imperatives. Biologia 76:1535–1550

    Article  CAS  Google Scholar 

  2. Khan SN, Khan AU (2016) Breaking the spell: combating multidrug resistant “Superbugs.” Front Microbiol 7:174

    Article  Google Scholar 

  3. Qais FA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I (2019) Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem Appl 2019:4649506

    Article  Google Scholar 

  4. Ohikhena FU, Wintola OA, Afolayan AJ (2017) Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (Sprengel) Balle (Loranthaceae), a Mistletoe growing on rubber tree, using the dilution techniques. Sci World J 2017:9658598

    Article  Google Scholar 

  5. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98(3):1001–1009

    Article  CAS  Google Scholar 

  6. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192

    Article  CAS  Google Scholar 

  7. Weinberg SE, Villedieu A, Bagdasarian N, Karah N, Teare L, Elamin WF (2020) Control and management of multidrug resistant Acinetobacter baumannii: a review of the evidence and proposal of novel approaches. Infect Prevent Pract 2(3):100077

    Article  CAS  Google Scholar 

  8. Ruppé É, Woerther PL, Barbier F (2015) Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5(1):61

    Article  Google Scholar 

  9. Parlet CP, Brown MM, Horswill AR (2019) commensal staphylococci influence staphylococcus aureus skin colonization and disease. Trends Microbiol 27:497–507

    Article  CAS  Google Scholar 

  10. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    Article  CAS  Google Scholar 

  11. Chessa D, Ganau G, Spiga L, Bulla A, Mazzarello V, Campus GV, Rubino S (2016) staphylococcus aureus and staphylococcus epidermidis virulence strains as causative agents of persistent infections in breast implants. PLoS ONE 11(1):01466682016

    Article  Google Scholar 

  12. Context L (2021) Antimicrobial resistance in nosocomial isolates of gram-negative bacteria: public health implications in the latvian context. Antibiotics 10(7):791

    Article  Google Scholar 

  13. Khan HA, Ahmad A, Mehboob R (2015) Nosocomial infections and their control strategies, Asian Pac. J Trop Biomed 5:509–514

    Article  Google Scholar 

  14. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501

    Article  CAS  Google Scholar 

  15. D’andrea MM, Fraziano M, Thaller MC, Rossolini GM (2019) The urgent need for novel antimicrobial agents and strategies to fight antibiotic resistance. Antibiotics 8:10–12

    Article  Google Scholar 

  16. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. J Evid Based Complement Altern Med 2015:246012

    Google Scholar 

  17. Lee NY, Ko WC, Hsueh PR (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 10:1153

    Article  CAS  Google Scholar 

  18. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  Google Scholar 

  19. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15:1–20

    Article  Google Scholar 

  20. Richter K, Thomas N, Claeys J, McGuane J, Prestidge C, Coenye T, Wormald P, Vreugde S (2017) A topical hydrogel with deferiprone and gallium-protoporphyrin targets bacterial iron metabolism and has antibiofilm activity. Antimicrob Agents Chemother 61(6):00481–00517

    Article  Google Scholar 

  21. Halder U, Roy R, Biswas R, Khan D, Mazumder K, Bandopadhyay R (2022) Synthesis of copper oxide nanoparticles using capsular polymeric substances produced by Bacillus altitudinis and investigation of its efficacy to kill pathogenic Pseudomonas aeruginosa. Chem Engg J Adv 11:100294

    Article  CAS  Google Scholar 

  22. Ssekatawa K, Byarugaba DK, Angwe MK, Wampande EM, Ejobi F, Nxumalo E, Maaza M, Sackey J, Kirabira JB (2022) Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front Bioeng Biotechnol 10:820218

    Article  Google Scholar 

  23. Shehabeldine AM, Amin BH, Hagras FA et al (2022) Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Appl Biochem Biotechnol 195(1):467–485. https://doi.org/10.1007/s12010-022-04120-2

    Article  CAS  Google Scholar 

  24. Dulta K, Koşarsoy Ağçeli G, Chauhan P et al (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32:2. https://doi.org/10.1186/s42834-021-00111-w

    Article  CAS  Google Scholar 

  25. Shah IH, Ashraf M, Sabir I, Manzoor MA, Malik M, Gulzar S, Ashraf F, Iqbal J, Niu Q, Zhang Y (2022) Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J Molecular Struct 1259:132696. https://doi.org/10.1016/j.molstruc.2022.132696

    Article  CAS  Google Scholar 

  26. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

    Article  Google Scholar 

  27. Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C (2020) Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement Med Ther 20(1):55. https://doi.org/10.1186/s12906-020-2837-5

    Article  CAS  Google Scholar 

  28. Navale GR, Rout CS, Gohil KN, Dharne MS, Late DJ, Shinde SS (2015) Oxidative and membrane stress-mediated antibacterial activity of WS2 and rGO-WS2 nanosheets. RSC Adv 5:74726–74733

    Article  CAS  Google Scholar 

  29. Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial Activity of ZnO Nanoparticles against Pathogenic Bacteria and Fungi. JSM Nanotechnol Nanomed 3:1033

    Google Scholar 

  30. Navale GR, Dharne MS, Shinde SS (2015) Antibiofilm activity of tert-BuOH functionalized ionic liquids with methylsulfonate counteranions. RSC Adv 5:68136–68142

    Article  CAS  Google Scholar 

  31. Robertson J, McGoverin C, Vanholsbeeck F, Swift S (2019) Optimisation of the protocol for the LIVE/DEAD® BacLightTM bacterial viability kit for rapid determination of bacterial load. Front Microbiol 10:801

    Article  Google Scholar 

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  33. Kielkopf CL, Bauer W, Urbatsch IL (2020) Bradford assay for determining protein concentration. Cold Spring Harb Protoc 2020(4):102269

    Article  Google Scholar 

  34. Lin YSE, Vidic RD, Stout JE, McCartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32:1997–2000

    Article  CAS  Google Scholar 

  35. Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin ASS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology 13:1–16

    Article  Google Scholar 

  36. Niño-Martínez N, Salas Orozco MF, Martínez-Castañón G-A, Torres Méndez F, Ruiz F (2019) Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci 20:2808

    Article  Google Scholar 

  37. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria “a battle of the titans.” Front Microbiol 9:1441

    Article  Google Scholar 

  38. Desai DG, Swarali H, Navale GR, Prabhune A, Late DJ, Dharne MS, Walke PS (2021) Inhibition of quorum sensing, motility and biofilm formation of pseudomonas aeruginosa by copper oxide nanostructures. J Clust Sci 32(6):1531–1541

    Article  CAS  Google Scholar 

  39. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  40. Ahamed M, Alhadlaq H A, Majeed Khan MA, Karuppiah P, Al-Dhabi Naif A (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:1–4. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  41. Khashan K S, Sulaiman G M, Abdulameer F A (2016) Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arabian J Sci Eng 41(1):301–310. https://doi.org/10.1007/s13369-015-1733-7

    Article  CAS  Google Scholar 

  42. Ren G, Hu D, Cheng E et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicro Agent 33(6):587–590

    Article  CAS  Google Scholar 

  43. Nithiyavathi R, John Sundaram S, Theophil Anand G, Raj Kumar D, Dhayal Raj A, Al Farraj DA, Aljowaie RM, AbdelGawwad MR, Samson Y, Kaviyarasu K (2021) Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. J Infect Public Health 14:1893–1902

    Article  CAS  Google Scholar 

  44. Romaniuk JAH, Cegelski L (2015) Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc B Biol Sci 370:20150024

    Article  Google Scholar 

  45. Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, Hobbs JK (2020) The architecture of the Gram-positive bacterial cell wall. Nature 582:294–297

    Article  CAS  Google Scholar 

  46. Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL (2020) Chemical biology tools for examining the bacterial cell wall. Cell Chem Biol 27:1052–1062

    Article  CAS  Google Scholar 

  47. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  48. Verma N, Kumar N (2019) Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon, ACS biomater. Sci Eng 5:1170–1188

    CAS  Google Scholar 

  49. Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB (2021) Bactericidal and virucidal activities of biogenic metal-based nanoparticles: advances and perspectives. Antibiotics 10(7):783

    Article  CAS  Google Scholar 

  50. Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Faruque MRI, Din IU, Alotaibi MA, Khan A (2021) Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS ONE 16(5):e0251082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Director, CSIR-National Chemical Laboratory, Pune, and the Director, National Center for Nanoscience and Nanotechnology, University of Mumbai (NCNNUM), for providing infrastructure and facilities for the research work. Mr. Harishchandra Nishad and Dr. Shobhnath Gupta are acknowledged for their valuable help during characterization and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahesh S. Dharne or Pravin S. Walke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 886 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, D.G., Navale, G.R., Late, D.J. et al. Size does matter: antibacterial activities and cytotoxic evaluation of polymorphic CuO nanostructures. J Mater Sci 58, 2782–2800 (2023). https://doi.org/10.1007/s10853-023-08157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08157-4

Navigation