Skip to main content

Advertisement

Log in

Effect of Zn content on 3D gel-printed porous Mg–Zn scaffolds for bone engineering

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study successfully prepared porous magnesium–zinc (Mg–xZn, x: mass ratio of Zn) scaffolds by the 3D gel-printing method. The effect of adding a large percentage of Zn content on porous Mg–xZn scaffolds was also investigated to comprehensively evaluate the effect of Zn on magnesium alloys. The viscosity of slurry decreases with the increase in Zn content. The optimum solid content of slurry suitable for printing is about 60%. The compressive strength of pure Mg, 0.9Mg–0.1Zn, 0.7Mg–0.3Zn, and 0.5Mg–0.5Zn porous scaffolds were 6.29 MPa, 13.03 MPa, 7.69 MPa, and 6.61 MPa, respectively, meeting the requirements of cancellous bone (0.1–16 MPa). In vitro degradation results showed that the degradation rate of Mg scaffolds can be slowed down by adding the appropriate amount of Zn. The fine and dispersed second-phase precipitation can improve the comprehensive properties of Mg–Zn alloy. This study facilitates a comprehensive evaluation of the effect of Zn content on 3D gel-printed magnesium scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hou Z, Xiang M, Chen N, Cai X, Zhang B, Luo R et al (2021) The biological responses and mechanisms of endothelial cells to magnesium alloy. Regen Biomater 8(3):13. https://doi.org/10.1093/rb/rbab017

    Article  CAS  Google Scholar 

  2. Yang H, Xia K, Wang T, Niu J, Song Y, Xiong Z et al (2016) Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J Alloys Compd 672:366–373. https://doi.org/10.1016/j.jallcom.2016.02.156

    Article  CAS  Google Scholar 

  3. Li N, Chen Y, Deng B, Yue J, Qu W, Yang H et al (2019) Low temperature UV assisted sol–gel preparation of ZrO2 pore-sealing films on micro-arc oxidized magnesium alloy AZ91D and their electrochemical corrosion behaviors. J Alloys Compd 792:1036–1044. https://doi.org/10.1016/j.jallcom.2019.04.124

    Article  CAS  Google Scholar 

  4. Wang T, Yang G, Zhou W, Hu J, Jia W, Lu W (2019) One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy. J Alloys Compd 799:71–82. https://doi.org/10.1016/j.jallcom.2019.05.338

    Article  CAS  Google Scholar 

  5. Bütev Öcal E, Esen Z, Aydınol K, Dericioğlu AF (2020) Comparison of the short and long-term degradation behaviors of as-cast pure Mg, AZ91 and WE43 alloys. Mater Chem Phys 241:122350. https://doi.org/10.1016/j.matchemphys.2019.122350

    Article  CAS  Google Scholar 

  6. Chaudry UM, Farooq A, Kb T, Malik A, Kamran M, Kim J-G et al (2022) Corrosion behavior of AZ31 magnesium alloy with calcium addition. Corros Sci 199:110205. https://doi.org/10.1016/j.corsci.2022.110205

    Article  CAS  Google Scholar 

  7. Jiang P, Blawert C, Zheludkevich ML (2020) The corrosion performance and mechanical properties of Mg–Zn based alloys—a review. Corros Mater Degrad 1(1):92–158. https://doi.org/10.3390/cmd1010007

    Article  Google Scholar 

  8. Zhang HD, Chen AY, Gan B, Jiang H, Gu LJ (2022) Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy. J Magnes Alloys 10(5):1358–1367. https://doi.org/10.1016/j.jma.2020.11.021

    Article  CAS  Google Scholar 

  9. Zhang Q, Chen Z, Li Q, Chen X, Zhao J, Bao J (2021) Deformation behavior characterized by reticular shear bands and long chain twins in Mg–Gd-Nd(–Zn)–Zr alloys. J Mater Res Technol 15:5326–5342. https://doi.org/10.1016/j.jmrt.2021.11.020

    Article  CAS  Google Scholar 

  10. Mena-Morcillo E, Veleva L (2020) Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: effect of surface layer stability on electrochemical behaviour. J Magnes Alloys 8(3):667–675. https://doi.org/10.1016/j.jma.2020.02.014

    Article  CAS  Google Scholar 

  11. Liu A-h, Xu J-l (2018) Preparation and corrosion resistance of superhydrophobic coatings on AZ31 magnesium alloy. Trans Nonferrous Met Soc China 28(11):2287–2293. https://doi.org/10.1016/s1003-6326(18)64873-3

    Article  CAS  Google Scholar 

  12. Zhang X, Wu Y, Xue Y, Wang Z, Yang L (2012) Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater Lett 86:42–45. https://doi.org/10.1016/j.matlet.2012.07.030

    Article  CAS  Google Scholar 

  13. Feng Y, Zhu S, Wang L, Chang L, Hou Y, Guan S (2018) Fabrication and characterization of biodegradable Mg–Zn–Y–Nd–Ag alloy: microstructure, mechanical properties, corrosion behavior and antibacterial activities. Bioact Mater 3(3):225–235. https://doi.org/10.1016/j.bioactmat.2018.02.002

    Article  Google Scholar 

  14. Dong J, Lin T, Shao H, Wang H, Wang X, Song K et al (2022) Advances in degradation behavior of biomedical magnesium alloys: a review. J Alloys Compd 908:164600. https://doi.org/10.1016/j.jallcom.2022.164600

    Article  CAS  Google Scholar 

  15. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49(4):1696–1701. https://doi.org/10.1016/j.corsci.2007.01.001

    Article  CAS  Google Scholar 

  16. Jarzębska A, Bieda M, Maj Ł, Chulist R, Wojtas D, Strąg M et al (2020) Controlled grain refinement of biodegradable Zn–Mg alloy: the effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion. Metall Mater Trans A 51(12):6784–6796. https://doi.org/10.1007/s11661-020-06032-4

    Article  CAS  Google Scholar 

  17. Dong J, Li Y, Lin P, Leeflang MA, van Asperen S, Yu K et al (2020) Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater 114:497–514. https://doi.org/10.1016/j.actbio.2020.08.002

    Article  CAS  Google Scholar 

  18. Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing-an additive manufacturing method for producing complex shape parts. Mater Des 101:80–87. https://doi.org/10.1016/j.matdes.2016.03.152

    Article  CAS  Google Scholar 

  19. Zhang Z, Lin T, Shao H, Peng J, Wang A, Zhang Y et al (2020) Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing. Ceram Int 46(1):325–330. https://doi.org/10.1016/j.ceramint.2019.08.266

    Article  CAS  Google Scholar 

  20. Zhang Y, Shao H, Lin T, Peng J, Wang A, Zhang Z et al (2019) Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method. Ceram Int 45(16):20493–20500. https://doi.org/10.1016/j.ceramint.2019.07.028

    Article  CAS  Google Scholar 

  21. Wu CL, Zai W, Man HC (2021) Additive manufacturing of ZK60 magnesium alloy by selective laser melting: parameter optimization, microstructure and biodegradability. Mater Today Commun 26:101922. https://doi.org/10.1016/j.mtcomm.2020.101922

    Article  CAS  Google Scholar 

  22. Yang G, Wang C, Wang C, Wang J, Liu D (2022) Effect of Gd element on corrosion rate of SLM formed medical magnesium alloy. Rare Metal Mater Eng 51(6):2167–2174

    CAS  Google Scholar 

  23. Gunasekaran J, Sevvel P, Solomon IJ (2021) Metallic materials fabrication by selective laser melting: a review. Mater Today Proc 37:252–256. https://doi.org/10.1016/j.matpr.2020.05.162

    Article  CAS  Google Scholar 

  24. Cai S, Lei T, Li N, Feng F (2012) Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C Mater Biol Appl 32(8):2570–2577. https://doi.org/10.1016/j.msec.2012.07.042

    Article  CAS  Google Scholar 

  25. Lin T, Li Q, Song K, Shao H, Yuan J, Deng X (2021) Preparation of TiC reinforced CrMo steel by 3D gel-printing. Powder Metall 64(5):360–369. https://doi.org/10.1080/00325899.2021.1911068

    Article  CAS  Google Scholar 

  26. Lin T, Jin L-P, Yuan J-Y, Shao H-P, Yu F-C, Li W-Y et al (2021) Direct ink writing of TiC-316L metal matrix composites with an epoxy resin-absolute ethanol system. Rare Met 40(3):590–599. https://doi.org/10.1007/s12598-020-01611-1

    Article  CAS  Google Scholar 

  27. Yin S, Duan W, Liu W, Wu L, Yu J, Zhao Z et al (2020) Influence of specific second phases on corrosion behaviors of Mg–Zn–Gd–Zr alloys. Corros Sci 166:108419. https://doi.org/10.1016/j.corsci.2019.108419

    Article  CAS  Google Scholar 

  28. Wang Y, Zhong L, Dou Y, Huang Z (2021) Enhanced age hardening response and precipitation evolution of elastic stress aged Mg–Zn alloys. J Alloys Compd 860:158513. https://doi.org/10.1016/j.jallcom.2020.158513

    Article  CAS  Google Scholar 

  29. Alizadeh R, Wang J, Llorca J (2021) Precipitate strengthening of pyramidal slip in Mg–Zn alloys. Mater Sci Eng A 804:140697. https://doi.org/10.1016/j.msea.2020.140697

    Article  CAS  Google Scholar 

  30. Pan Y, He S, Wang D, Huang D, Zheng T, Wang S et al (2015) In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications. Mater Sci Eng C Mater Biol Appl 47:85–96. https://doi.org/10.1016/j.msec.2014.11.048

    Article  CAS  Google Scholar 

  31. Dong H, Lin F, Boccaccini AR, Virtanen S (2021) Corrosion behavior of biodegradable metals in two different simulated physiological solutions: comparison of Mg Zn and Fe. Corros Sci 182:109278. https://doi.org/10.1016/j.corsci.2021.109278

    Article  CAS  Google Scholar 

  32. Thekkepat K, Han H-S, Choi J-W, Lee S-C, Yoon ES, Li G et al (2022) Computational design of Mg alloys with minimal galvanic corrosion. J Magnes Alloys 10(7):1972–1980. https://doi.org/10.1016/j.jma.2021.06.019

    Article  CAS  Google Scholar 

  33. Tong F, Chen X, Wang Q, Wei S, Gao W (2021) Hypoeutectic Mg–Zn binary alloys as anode materials for magnesium–air batteries. J Alloys Compd 857:157579. https://doi.org/10.1016/j.jallcom.2020.157579

    Article  CAS  Google Scholar 

  34. Feng B, Liu G, Yang P, Huang S, Qi D, Chen P et al (2022) Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution. J Magnes Alloys 10(6):1598–1608. https://doi.org/10.1016/j.jma.2020.12.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Projects of Guangdong Province, P.R. China (Grant No. 2016B090914001) and Jihua Laboratory Project “Additive Manufacturing for Difficulty-to-Machine Materials” (Grant No.X190061UZ190).

Author information

Authors and Affiliations

Authors

Contributions

TL involved in investigation, conceptualization, methodology, writing—original draft preparation, writing—reviewing, and editing. JD involved in investigation, formal analysis, writing—original draft, and data curation. XW involved in writing—reviewing, and editing. XD involved in writing—reviewing, and editing. HS involved in resources, funding acquisition, and supervision.

Corresponding authors

Correspondence to Tao Lin or Xin Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Dong, J., Wang, X. et al. Effect of Zn content on 3D gel-printed porous Mg–Zn scaffolds for bone engineering. J Mater Sci 58, 1229–1242 (2023). https://doi.org/10.1007/s10853-022-08108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08108-5

Navigation