Skip to main content

Advertisement

Log in

High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The vital challenge is to advance the electronic conductivity of the transition metal diselenide for their supercapacitor application. In this report, nickel diselenide nanospheres and their decoration by activated carbon are reported by a one-step, surfactant-free hydrothermal technique. The activated carbon-decorated NiSe2 nanospheres (NAC) electrode displays high electrochemical performance than pure NiSe2 nanospheres due to more active sites, enhanced conductivity, and reduced diffusion path of electrons and electrolyte ions for maximum energy storage. The NAC electrode depicts a specific capacity of about 119 C g−1 at 0.3 A g−1. The fabricated symmetric supercapacitor using an NAC electrode shows a high specific capacitance of about 282 F g−1 at 10 mV s−1. The cycle stability of 70% for ten thousand cycles is exhibited for the fabricated symmetric supercapacitor. It manifests high specific energy of 28 W h kg−1 and specific power of value 980 W kg−1 at 1 A g−1. Device applicability with load is tested at laboratory scale by glowing different color LEDs, and a panel of 26 red LEDs illuminated for 56 min effortlessly. A self-explanatory mechanism has also been proposed to make it easier to realize the readers about glowing LEDs, and their panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bekhit SM, Mohamed SG, Ghayad IM, Attia SY, Metwally W, Abdel-Karim R, El-Raghy SM (2022) Snow crystal-like structure of NiSe as a binder-free electrode for high-performance hybrid supercapacitor. J Mater Sci 57:1–16. https://doi.org/10.1007/s10853-021-06736-x

    Article  CAS  Google Scholar 

  2. Guan X, Zhao L, Zhang P, Liu J, Song X, Gao L (2020) Electrode material of core-shell hybrid MoS2@C/CNTs with carbon intercalated few-layer MoS2 nanosheets. Mater Today Energy 16:100379

    Article  Google Scholar 

  3. Ji Z, Chen L, Liu K, Ma D, Zhang S, Zhu G, Shen X, Song P, Premlatha S (2022) Nickel sulfide and cobalt sulfide nanoparticles deposited on ultrathin carbon two-dimensional nanosheets for hybrid supercapacitors. Appl Surf Sci 574:151727

    Article  CAS  Google Scholar 

  4. Arya A, Gaur A, Kumar V, Tanwar S, Sharma AL (2021) Nanostructured metal oxides for hybrid supercapacitors. In: Advanced ceramics for energy and environmental applications. CRC Press, pp 82–103

  5. Kamboj V, Arya A, Tanwar S, Kumar V, Sharma AL (2021) Nanofiller-assisted Na+-conducting polymer nanocomposite for ultracapacitor: structural, dielectric and electrochemical properties. J Mater Sci 56:6167–6187. https://doi.org/10.1007/s10853-020-05667-3

    Article  CAS  Google Scholar 

  6. Kumar A, Madaan M, Arya A, Tanwar S, Sharma AL (2021) Correction to: Ion transport, dielectric and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron 32:6702–6704

    Article  CAS  Google Scholar 

  7. He M, Cao L, Li W, Chang X, Zheng X, Ren Z (2021) NiO nanoflakes decorated needle-like MnCo2O4 hierarchical structure on nickle foam as an additive-free and high performance supercapacitor electrode. J Mater Sci 56:8613–8626. https://doi.org/10.1007/s10853-021-05810-8

    Article  CAS  Google Scholar 

  8. Tanwar S, Singh N, Sharma AL (2022) Structural, microstructural and electrochemical properties of carbonaceous nanocomposite for supercapacitor applications. In: Advanced functional materials and devices. Springer, pp 123–130

  9. Devi C, Swaroop R, Arya A, Tanwar S, Sharma AL, Kumar S (2021) Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films. Polym Bull 79:1–19

    Google Scholar 

  10. Tanwar S, Singh N, Sharma AL (2022) Aging impact of Se powder on the electrochemical properties of molybdenum selenide: supercapacitor application. Mater Today Proc 57:94–99

    Article  CAS  Google Scholar 

  11. Tanwar S, Arya A, Gaur A, Sharma AL (2021) Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. J Phys Condens Matter 33:303002. https://doi.org/10.1088/1361-648x/abfb3c

    Article  CAS  Google Scholar 

  12. Nandhini S, Muralidharan G (2022) The binder-free mesoporous CoNi2S4 electrode for high-performance symmetric and asymmetric supercapacitor devices. J Mater Sci 57:5933–5953. https://doi.org/10.1007/s10853-022-06987-2

    Article  CAS  Google Scholar 

  13. Fan L-Q, Liu G-J, Wu J-H, Liu L, Lin J-M, Wei Y-L (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26–33

    Article  CAS  Google Scholar 

  14. Velayutham R, Manikandan R, Raj CJ, Savariraj AD, Cho W-J, Jang H-M, Kim BC (2021) Rationally designed metal–organic framework templated iron-molybdenum sulfide for high energy density hybrid supercapacitors. Appl Surf Sci 570:151051

    Article  CAS  Google Scholar 

  15. Fan L-Q, Liu G-J, Zhang C-Y, Wu J-H, Wei Y-L (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrogen Energy 40:10150–10157

    Article  CAS  Google Scholar 

  16. Bello IT, Otun KO, Nyongombe G, Adedokun O, Kabongo GL, Dhlamini MS (2022) Non-modulated synthesis of cobalt-doped MoS2 for improved supercapacitor performance. Int J Energy Res 46:8908–8918

    Article  CAS  Google Scholar 

  17. Guo S (2018) Trace elements in coal gangue: a review. Contrib Miner 128–143

  18. Arul NS, Han JI (2016) Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Mater Lett 181:345–349

    Article  CAS  Google Scholar 

  19. Guo K, Yang F, Cui S, Chen W, Mi L (2016) Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. Rsc Adv 6:46523–46530

    Article  CAS  Google Scholar 

  20. Chang A, Zhang C, Yu Y, Yu Y, Zhang B (2018) Plasma-assisted synthesis of NiSe2 ultrathin porous nanosheets with selenium vacancies for supercapacitor. ACS Appl Mater Interfaces 10:41861–41865

    Article  CAS  Google Scholar 

  21. Jiang H, Wang Z, Yang Q, Tan L, Dong L, Dong M (2019) Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett 11:1–14

    Article  Google Scholar 

  22. Wu S, Cui T, Hu Q, Yin F, Feng Q, Zhou S, Su Q, Wu L, Yang Q (2020) Mixing solvothermal synthesis nickel selenide on the surface of graphene for high-efficiency asymmetric supercapacitors. Synth Met 268:116490

    Article  CAS  Google Scholar 

  23. Lee Y-H, Kang JS, Jo I-R, Sung Y-E, Ahn K-S (2021) Double-layer cobalt selenide/nickel selenide with web-like nanostructures as a high-performance electrode material for supercapacitors. J Electroanal Chem 895:115479

    Article  CAS  Google Scholar 

  24. Wu S, Zhou S, Feng Q, Zhao H, Xu X, Cui T, Zhang H, Wang X, Yang Q (2021) Nanosphere-like NiSe2/SnSe2 composite electrode materials with excellent performance for asymmetric supercapacitor. J Energy Storage 42:103032

    Article  Google Scholar 

  25. Qu J, Bai Y, Li X, Song K, Zhang S, Wang X, Wang X, Dai S (2021) Rational design of NiSe2@rGO nanocomposites for advanced hybrid supercapacitors. J Mater Res Technol 15:6155–6161

    Article  CAS  Google Scholar 

  26. Vidhya MS, Yuvakkumar R, Ravi G, Saravanakumar B, Velauthapillai D (2021) Asymmetric polyhedron structured NiSe2@MoSe2 device for use as a supercapacitor. Nanoscale Adv 3:4207–4215

    Article  CAS  Google Scholar 

  27. Meng L, Wu Y, Zhang T, Tang H, Tian Y, Yuan Y, Zhang Q, Zeng Y, Lu J (2019) Highly conductive NiSe2 nanostructures for all-solid-state battery–supercapacitor hybrid devices. J Mater Sci 54:571–581. https://doi.org/10.1007/s10853-018-2812-4

    Article  CAS  Google Scholar 

  28. Pawar SA, Patil DS, Nandi DK, Islam MM, Sakurai T, Kim S-H, Shin JC (2022) Cobalt-based metal oxide coated with ultrathin ALD-MoS2 as an electrode material for supercapacitors. Chem Eng J 435:135066

    Article  CAS  Google Scholar 

  29. Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong M, Liu H, Zhang J, Li T, Wang N, Guo Z (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425

    Article  CAS  Google Scholar 

  30. Sha Z, Huang F, Zhou Y, Zhang J, Wu S, Chen J, Brown SA, Peng S, Han Z, Wang C-H (2021) Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors. Compos Sci Technol 201:108568

    Article  CAS  Google Scholar 

  31. Akdemir M (2022) Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material. Int J Energy Res 46:7722–7731

    Article  CAS  Google Scholar 

  32. Zhou Y, Maleski K, Anasori B, Thostenson JO, Pang Y, Feng Y, Zeng K, Parker CB, Zauscher S, Gogotsi Y (2020) Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14:3576–3586

    Article  CAS  Google Scholar 

  33. Singh N, Tanwar S, Sharma AL, Yadav BC (2022) Advanced cyclic stability and highly efficient different shaped carbonaceous nanostructured electrodes for solid-state energy storage devices. Int J Hydrogen Energy 47:28254–28271

    Article  Google Scholar 

  34. Tanwar S, Singh N, Sharma AL (2022) Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications. J Energy Storage 45:103797

    Article  Google Scholar 

  35. Tanwar S, Singh N, Sharma AL (2022) High-performance different shape carbon decorated asteroidea-like cobalt diselenide electrode for energy storage device. Fuel 330:125602. https://doi.org/10.1016/j.fuel.2022.125602

    Article  CAS  Google Scholar 

  36. Dodony I, Pósfai M, Buseck AR (1996) Structural relationship between pyrite and marcasite. Am Miner 81:119–125

    Article  CAS  Google Scholar 

  37. Mahajan H, Godara SK, Srivastava AK (2022) Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. J Alloys Compd 896:162966

    Article  CAS  Google Scholar 

  38. Khalil HPS, Jawaid M, Firoozian P, Rashid U, Islam A, Akil HM (2013) Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization. J Biobased Mater Bioenergy 7:708–714

    Article  Google Scholar 

  39. Qi B, Di L, Xu W, Zhang X (2014) Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. J Mater Chem A 2:11885–11890

    Article  CAS  Google Scholar 

  40. Dongol M, El-Denglawey A, Abd El Sadek MS, Yahia IS (2015) Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik (Stuttg) 126:1352–1357

    Article  CAS  Google Scholar 

  41. Mani S, Ramaraj S, Chen S-M, Dinesh B, Chen T-W (2017) Two-dimensional metal chalcogenides analogous NiSe2 nanosheets and its efficient electrocatalytic performance towards glucose sensing. J Colloid Interface Sci 507:378–385

    Article  CAS  Google Scholar 

  42. Jansi Rani B, Ravi G, Yuvakkumar R, Saravanakumar B, Thambidurai M, Dang C, Velauthapillai D (2020) CoNiSe2 nanostructures for clean energy production. ACS Omega 5:14702–14710

    Article  CAS  Google Scholar 

  43. Mousavi-Kamazani M, Salavati-Niasari M, Goudarzi M, Gharehbaii A (2016) A facile novel sonochemical-assistance synthesis of NiSe 2 quantum dots to improve the efficiency of dye-sensitized solar cells. J Inorg Organomet Polym Mater 26:259–263

    Article  CAS  Google Scholar 

  44. Mopoung S, Dejang N (2020) Activated carbon preparation from eucalyptus wood chips using continuous carbonization-steam activation process in a batch intermittent rotary kiln. Sci Rep 11:1–9

    Google Scholar 

  45. Baranov AV, Bekhterev AN, Bobovich YS, Petrov VI (1987) Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Opt Spectrosc 62:612–616

    Google Scholar 

  46. Wang B, Wang X, Zheng B, Yu B, Qi F, Zhang W, Li Y, Chen Y (2017) NiSe2 nanoparticles embedded in CNT networks: scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction. Electrochem Commun 83:51–55

    Article  CAS  Google Scholar 

  47. Gu Y, Fan L-Q, Huang J-L, Geng C-L, Lin J-M, Huang M-L, Huang Y-F, Wu J-H (2019) N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J Power Sources 425:60–68

    Article  CAS  Google Scholar 

  48. Imaeda T, Kawasaki K (1992) Theory of morphological evolution in Ostwald ripening. Phys A Stat Mech Appl 186:359–387

    Article  CAS  Google Scholar 

  49. Ke D, Pan Y, Wu T, Wang J, Xu X, Pan Y (2020) Effect of W/B atomic ratio on the microstructure and mechanical properties of WCoB-TiC ceramic composites: first-principles calculations and experiment. J Mater Res Technol 9:8744–8753

    Article  CAS  Google Scholar 

  50. Miculescu F, Lută C, Constantinescu AE, Maidaniuc A, Mocanu A-C, Miculescu M, Voicu SI, Ciocan LT (2020) Considerations and influencing parameters in EDS microanalysis of biogenic hydroxyapatite. J Funct Biomater 11:82

    Article  CAS  Google Scholar 

  51. Gund GS, Dubal DP, Shinde SS, Lokhande CD (2014) Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl Mater Interfaces 6:3176–3188

    Article  CAS  Google Scholar 

  52. Sakthivel M, Ramaraj S, Chen S-M, Ho K-C (2019) Bimetallic vanadium cobalt diselenide nanosheets with additional active sites for excellent asymmetric pseudocapacitive performance: comparing the electrochemical performances with M-CoSe2 (M = Zn, Mn, and Cu). J Mater Chem A 7:12565–12581

    Article  CAS  Google Scholar 

  53. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New York

    Book  Google Scholar 

  54. Younas W, Naveed M, Cao C, Zhu Y, Du C, Ma X, Mushtaq N, Tahir M, Naeem M (2022) Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J Colloid Interface Sci 608:1005–1014

    Article  CAS  Google Scholar 

  55. Wang S, Li W, Xin L, Wu M, Long Y, Huang H, Lou X (2017) Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem Eng J 330:1334–1341

    Article  CAS  Google Scholar 

  56. Wu S, Hu Q, Wu L, Li J, Peng H, Yang Q (2019) One-step solvothermal synthesis of nickel selenide nanoparticles as the electrode for high-performance supercapacitors. J Alloys Compd 784:347–353

    Article  CAS  Google Scholar 

  57. Sitaaraman SR, Santhosh R, Kollu P, Jeong SK, Sellappan R, Raghavan V, Jacob G, Grace AN (2020) Role of graphene in NiSe2/graphene composites-Synthesis and testing for electrochemical supercapacitors. Diam Relat Mater 108:107983

    Article  Google Scholar 

  58. Zheng Y, Tian Y, Sarwar S, Luo J, Zhang X (2020) Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J Power Sources 452:227793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Shweta Tanwar, acknowledges the University Grants Commission (UGC), India, for the award of the Senior Research Fellowship (SRF) (UGC ID-DEC18-527340) fellowship. The authors also acknowledge Central Instrumentation Laboratory, Central University of Punjab for XRD, FTIR, and FESEM characterization facilities. The authors acknowledge the Mohd. Sadiq; MRC, Malaviya National Institute of Technology Jaipur; CRF, IIT Delhi, and Advanced Material Research Center, IIT Mandi for Raman, XPS, and BET material characterization, respectively.

Author information

Authors and Affiliations

Authors

Contributions

ST was involved in conceptualization, formal analysis, investigation, validation, methodology, visualization, writing—original draft, review, and editing. NS was involved in conceptualization, validation, writing-review and editing, visualization. ALS was involved in conceptualization, visualization, investigation, methodology, writing—review and editing, supervision.

Corresponding author

Correspondence to A. L. Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, S., Singh, N. & Sharma, A.L. High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres. J Mater Sci 57, 20335–20350 (2022). https://doi.org/10.1007/s10853-022-07895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07895-1

Navigation