Skip to main content

Advertisement

Log in

CoFe2O4 nanoparticles derived from ZIF-67@Fe for lithium-ion batteries with stable cycling

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The MOFs materials exist potential application prospects in the energy storage field for their high specific surface area and porosity. However, the MOFs materials also suffer from poor conductivity during the charging and discharging processes. Compared with MOFs, MOFs-derived metal oxides not only inherit the porosity of the MOFs, but also present high conductivity owing to the derived carbon. Herein, an effective approach for encapsulating CoFe2O4 into the derived carbon, which not only increases their conductivity but also restrains the volume expansion, and had excellent reaction kinetics. In this work, CoFe2O4 nanoparticles have been synthesized by one-step annealed process. The electrode is used as the anode for LIBs and found to have long-term stability of 491 mAh g−1 at a current density of 1.0 A g−1 even after 500 cycles. The CoFe2O4 electrode exhibits appreciable electrochemical performance, including 783 and 482 mAh g−1 at the current densities of 0.1 and 2.0 A g−1, respectively. Such excellent electrochemical properties are ascribed to the porous structure of MOFs, which effectively promotes ion/charge transmission. This will guide material design and optimization of battery communities and electrochemical energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jaramillo-Cabanzo DF, Ajayi BP, Meduri P, Sunkara MK (2021) One-dimensional nanomaterials in lithium-ion batteries. J Phys D-Appl Phys 54:083011

    Article  Google Scholar 

  2. Ding H, Zhang Q, Liu Z, Wang J, Ma R, Fan L, Wang T, Zhao J, Ge J, Lu X, Yu X, Lu B (2018) TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochim Acta 284:314–320

    Article  CAS  Google Scholar 

  3. Xu Y, Zhu K, Liu P, Wang J, Yan K, Liu J, Zhang J, Li J, Yao Z (2019) Controllable synthesis of 3D Fe3O4 micro-cubes as anode materials for lithium ion batteries. CrystEngComm 21:5050–5058

    Article  CAS  Google Scholar 

  4. Wang Y, Gao Y, Shao J, Holze R, Chen Z, Yun Y, Qu Q, Zheng H (2018) Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 6:3659–3666

    Article  CAS  Google Scholar 

  5. Lu XF, Gu LF, Wang JW, Wu JX, Liao PQ, Li GR (2017) Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater 29:1604437

    Article  Google Scholar 

  6. Wei D, Xu F, Xu J, Fang J, Wang G, Koh SW, Sun Z (2019) A critical electrochemical performance descriptor of ferrites as anode materials for Li-ion batteries: inversion degree. Ceram Int 45:24538–24544

    Article  CAS  Google Scholar 

  7. Zhang L, Wei T, Jiang Z, Liu C, Jiang H, Chang J, Sheng L, Zhou Q, Yuan L, Fan Z (2018) Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48:238–247

    Article  CAS  Google Scholar 

  8. Moura MN, Barrada RV, Almeida JR, Moreira TFM, Schettino MA, Freitas JCC, Ferreira SAD, Lelis MFF, Freitas M (2017) Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries. Chemosphere 182:339–347

    Article  CAS  Google Scholar 

  9. Xiao Y, Li X, Zai J, Wang K, Gong Y, Li B, Han Q, Qian X (2014) CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Lett 6:307–315

    Article  Google Scholar 

  10. Wang C, Su H, Ma Y, Yang D, Dong Y, Li D, Wang L, Liu Y, Zhang J (2018) Coordination polymers-derived three-dimensional hierarchical CoFe2O4 hollow spheres as high-performance lithium ion storage. ACS Appl Mater Interfaces 10:28679–28685

    Article  CAS  Google Scholar 

  11. Wang L, Bock DC, Li J, Stach EA, Marschilok AC, Takeuchi KJ, Takeuchi ES (2018) Synthesis and characterization of CuFe2O4 Nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-Ion batteries. ACS Appl Mater Interfaces 10:8770–8785

    Article  CAS  Google Scholar 

  12. Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628

    Article  CAS  Google Scholar 

  13. Javadian S, Parviz Z, Salimi P, Nasrollahpour M, Gharibi H, Kashani H, Morsali A, Zaccaria RP (2022) Engineering cobalt-based nanoparticles encapsulated in hierarchical porous N-doped carbon as an efficient electrode for Li storage. J Alloy Compd 898:163849

    Article  Google Scholar 

  14. Cheng N, Zhao J, Fan L, Liu Z, Chen S, Ding H, Yu X, Liu Z, Lu B (2019) Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun (Camb) 55:12511–12514

    Article  CAS  Google Scholar 

  15. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J Energy Storage 21:632–646

    Article  Google Scholar 

  16. Zhao R, Liang Z, Zou R, Xu Q (2018) Metal-organic frameworks for batteries. Joule 2:2235–2259

    Article  CAS  Google Scholar 

  17. Sun W, Tao X, Du P, Wang Y (2019) Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chem Eng J 366:622–630

    Article  CAS  Google Scholar 

  18. Shui J, Chen C, Grabstanowicz L, Zhao D, Liu DJ (2015) Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc Natl Acad Sci U S A 112:10629–10634

    Article  CAS  Google Scholar 

  19. Xia S-B, Huang W-J, Shen X, Liu J, Cheng F-X, Guo H, Liu J-J (2021) Fabrication of porous Ni/CoFe2O4@C composite for pseudocapacitive lithium storage. J Alloy Compd 854:157177

    Article  CAS  Google Scholar 

  20. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  21. Yang H, Zhang K, Wang Y, Yan C, Lin S (2018) CoFe2O4 derived-from bi-metal organic frameworks wrapped with graphene nanosheets as advanced anode for high-performance lithium ion batteries. J Phys Chem Solids 115:317–321

    Article  CAS  Google Scholar 

  22. Ding L, Zeng M, Wang H, Jiang X (2021) Synthesis of MIL-101-derived bimetal–organic framework and applications for lithium-ion batteries. J Mater Sci Mater Electron 32:1778–1786

    Article  CAS  Google Scholar 

  23. Li Y, Zhu C, Lu T, Guo Z, Zhang D, Ma J, Zhu S (2013) Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon 52:565–573

    Article  Google Scholar 

  24. Hu Z, Liu Z, Zhao J, Yu X, Lu B (2021) Rose-petals-derived hemispherical micropapillae carbon with cuticular folds for super potassium storage. Electrochim Acta 368:137629

    Article  CAS  Google Scholar 

  25. Wu C, Jiang Y, Kopold P, van Aken PA, Maier J, Yu Y (2016) Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv Mater 28:7276–7283

    Article  CAS  Google Scholar 

  26. Li Z, Huang X, Sun C, Chen X, Hu J, Stein A, Tang B (2017) Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J Mater Sci 52:3979–3991

    Article  CAS  Google Scholar 

  27. Fu X, Dan C, Min W, Yang Y, Zhao X (2014) Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim Acta 116:164–169

    Article  CAS  Google Scholar 

  28. Gu Z, Xiang X, Fan G, Li F (2008) Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route. J Phys Chem C 112:18459–18466

    Article  CAS  Google Scholar 

  29. Zhang N, Ruan S, Qu F, Yin Y, Li X, Wen S, Adimi S, Yin J (2019) Metal–organic framework-derived Co3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde. Sens Actuators B Chem 298:126887

    Article  CAS  Google Scholar 

  30. Zhong M, Yang D-H, Kong L-J, Shuang W, Zhang Y-H, Bu X-H (2017) Bimetallic metal–organic framework derived Co3O4–CoFe2O4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Trans 46:15947–15953

    Article  CAS  Google Scholar 

  31. Xia H, Zhu D, Fu Y, Wang X (2012) CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta 83:166–174

    Article  CAS  Google Scholar 

  32. Wang Z, Fei P, Xiong H, Qin C, Zhao W, Liu X (2017) CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim Acta 252:295–305

    Article  CAS  Google Scholar 

  33. Nguyen T-A, Halim M, Lee JK, Lee S-W (2017) Facile synthesis of nanoporous Fe2O3 with internal nanocavities for highly reversible lithium storage. Acta Mater 140:290–299

    Article  CAS  Google Scholar 

  34. Zou M, Wang L, Li J, Guan L, Huang Z (2017) Enhanced Li-ion battery performances of yolk-shell Fe3O4@C anodes with Fe3C catalyst. Electrochim Acta 233:85–91

    Article  CAS  Google Scholar 

  35. Sun GW, Zhang CY, Dai Z, Jin MJ, Liu QY, Pan JL, Wang YC, Gao XP, Lan W, Sun GZ, Gong CS, Zhang ZX, Pan XJ, Li J, Zhou JY (2022) Construction of all-carbon micro/nanoscale interconnected sulfur host for high-rate and ultra-stable lithium-sulfur batteries: Role of oxygen-containing functional groups. J Colloid Interface Sci 608:459–469

    Article  CAS  Google Scholar 

  36. Sun B, Lou S, Qian Z, Zuo P, Du C, Ma Y, Huo H, Xie J, Wang J, Yin G (2019) Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy 66:104179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding support from the National Natural Science Foundation of China (No. 11474135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Xiaojun Pan.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 941 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Wu, C., Li, X. et al. CoFe2O4 nanoparticles derived from ZIF-67@Fe for lithium-ion batteries with stable cycling. J Mater Sci 57, 19490–19501 (2022). https://doi.org/10.1007/s10853-022-07822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07822-4

Navigation