Skip to main content
Log in

Unveiling mechanism of surface-guided platinum nanowire growth

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface-guided growth of non-planar nanowires on functional substrates offers the new opportunity to precisely control their diameter, length, density and alignment, which will greatly benefit their direct integration into practical devices for large-scale applications. However, control of noble metal nanowires growth and arrangement remains a great challenge, and the mechanistic understanding is still limited. Herein, we choose Pt as a model material system to study the synthesis conditions required to control the in situ growth of aligned Pt nanowires on flat titanium substrate via a one-step and room-temperature green chemical synthesis process in aqueous solution. Most importantly, it is for the first time discovered that ordered nanoarrays and self-assembled nanoflowers can be directly grown on flat Ti substrate by merely adjusting the reaction times, without use of any soft/hard templates, surfactants and organic solvents. The proposed surface-guided growth mechanisms for nanoarray and nanoflower formation in this study may shed light on understanding of oriented arrangement/assembly of one-dimensional Pt nanowires into desirable morphologies for a variety of practical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Luan NH, Chang C-F (2021) Investigation of the aging effect of electrolyte on the morphology and photocatalytic properties of TiO2NTs synthesized using the anodization route. J Mater Sci 56(34):19106–19118. https://doi.org/10.1007/s10853-021-06433-9

    Article  CAS  Google Scholar 

  2. Boettcher T, Stojkovikj S, Khadke P, Kunz U, Mayer MT, Roth C, Ensinger W, Muench F (2021) Electrodeposition of palladium-dotted nickel nanowire networks as a robust self-supported methanol electrooxidation catalyst. J Mater Sci 56(22):12620–12633. https://doi.org/10.1007/s10853-021-06088-6

    Article  CAS  Google Scholar 

  3. Huang C-Y, Guo R-T, Pan W-G, Tang J-Y, Zhou W-G, Liu X-Y, Qin H, Jia P-Y (2019) One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Appl Surf Sci 464:534–543

    Article  CAS  Google Scholar 

  4. Liu Y, Chen Q, Cullen DA, Xie Z, Lian T (2020) Efficient hot electron transfer from small Au nanoparticles. Nano Lett 20(6):4322–4329

    Article  CAS  Google Scholar 

  5. Lv C, Liu P, Huang F, Zhang H, Chu X, Li S (2021) Carrier dynamics in hierarchical ZnFe2O4 nanotube arrays and their roles in boosting photoelectrochemical water oxidation. J Mater Sci 56(15):9408–9418. https://doi.org/10.1007/s10853-021-05900-7

    Article  CAS  Google Scholar 

  6. Singh P, Simanjuntak FM, Wu Y-C, Kumar A, Zan H-W, Tseng T-Y (2020) Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. J Mater Sci 55(21):8850–8860. https://doi.org/10.1007/s10853-020-04659-7

    Article  CAS  Google Scholar 

  7. Tang S, Chen M, Zheng N (2014) Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10(15):3139–3144

    Article  CAS  Google Scholar 

  8. Gupta VK, Alharbie NS, Agarwal S, Grachev VA (2019) New emerging one dimensional nanostructure materials for gas sensing application: a mini review. Curr Anal Chem 15(2):131–135

    Article  CAS  Google Scholar 

  9. Wang D, Sun H, Chen A, Jang S-H, Jen AKY, Szep A (2012) Chemiresistive response of silicon nanowires to trace vapor of nitro explosives. Nanoscale 4(8):2628–2632

    Article  CAS  Google Scholar 

  10. Wang D, Chen A, Jang S-H, Yip H-L, Jen AKY (2011) Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. J Mater Chem 21(20):7269–7273. https://doi.org/10.1039/c1jm10124b

    Article  CAS  Google Scholar 

  11. Yang Z, Dou X (2016) Emerging and future possible strategies for enhancing 1D inorganic nanomaterials-based electrical sensors towards explosives vapors detection. Adv Func Mater 26(15):2406–2425

    Article  CAS  Google Scholar 

  12. Li L, Zhai T, Bando Y, Golberg D (2012) Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy 1(1):91–106

    Article  CAS  Google Scholar 

  13. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4(18):6772–6801

    Article  CAS  Google Scholar 

  14. Luan X, Guan D, Wang Y (2012) Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J Phys Chem C 116(27):14257–14263

    Article  CAS  Google Scholar 

  15. Varadharajaperumal S, Alagarasan D, Ganesan R, Satyanarayan MN, Hegde G (2020) Controlled growth of 1D-ZnO nanotubes using one-step hot plate technique for CZTS heterojunction solar cells. Mater Sci Semicond Process 106:104763

    Article  CAS  Google Scholar 

  16. Jin T, Han Q, Wang Y, Jiao L (2018) 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2):1703086

    Article  CAS  Google Scholar 

  17. Cheong JY, Kim C, Jung J-W, Yun T-G, Youn DY, Cho S-H, Yoon KR, Jang H-Y, Song SW, Kim I-D (2018) Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries. J Power Sources 400:485–492

    Article  CAS  Google Scholar 

  18. Wu Y, Liu X, Yang Z, Gu L, Yu Y (2016) Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26):3522–3529

    Article  CAS  Google Scholar 

  19. Sun J, Guo L, Sun X, Zhang J, Hou L, Li L, Yang S, Yuan C (2019) One-dimensional nanostructured pseudocapacitive materials: design. Synt Appl Supercapacit Batteries Supercaps 2(10):820–841

    Article  CAS  Google Scholar 

  20. Jiang J, Zhang Y, Nie P, Xu G, Shi M, Wang J, Wu Y, Fu R, Dou H, Zhang X (2018) Progress of nanostructured electrode materials for supercapacitors. Adv Sustain Syst 2(1):1700110

    Article  CAS  Google Scholar 

  21. Xie Z, Xu W, Cui X, Wang Y (2017) Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications. Chemsuschem 10(8):1645–1663

    Article  CAS  Google Scholar 

  22. Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136(46):16132–16135

    Article  CAS  Google Scholar 

  23. Alia SM, Shulda S, Ngo C, Pylypenko S, Pivovar BS (2018) Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal 8(3):2111–2120

    Article  CAS  Google Scholar 

  24. Wang Y, Choi S-I, Zhao X, Xie S, Peng H-C, Chi M, Huang CZ, Xia Y (2014) Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv Func Mater 24(1):131–139

    Article  CAS  Google Scholar 

  25. Xie Z, Tang H, Wang Y (2019) MOF-derived Ni-doped CoS2 grown on carbon fiber paper for efficient oxygen evolution reaction. Chem ElectroChem 6(4):1206–1212

    CAS  Google Scholar 

  26. Yang G, Yu S, Kang Z, Dohrmann Y, Bender G, Pivovar BS, Green JB, Retterer ST, Cullen DA, Zhang F-Y (2019) A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Convers Manage 182:108–116

    Article  CAS  Google Scholar 

  27. Kang Z, Yang G, Mo J, Yu S, Cullen DA, Retterer ST, Toops TJ, Brady MP, Bender G, Pivovar BS, Green JB, Zhang F-Y (2018) Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. Int J Hydrogen Energy 43(31):14618–14628

    Article  CAS  Google Scholar 

  28. Kang Z, Yang G, Mo J, Li Y, Yu S, Cullen DA, Retterer ST, Toops TJ, Bender G, Pivovar BS, Green JB, Zhang F-Y (2018) Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy 47:434–441

    Article  CAS  Google Scholar 

  29. Mo J, Kang Z, Retterer ST, Cullen DA, Toops TJ, Green JB, Mench MM, Zhang F-Y (2016) Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci Adv 2(11):e1600690

    Article  CAS  Google Scholar 

  30. Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G (2020) Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain Energy Fuels 4(1):15–30

    Article  CAS  Google Scholar 

  31. Cheng Y, Zhang J, Lu S, Jiang SP (2020) Significantly enhanced performance of direct methanol fuel cells at elevated temperatures. J Power Sources 450:227620

    Article  CAS  Google Scholar 

  32. El-Nagar GA, Muench F, Roth C (2019) Tailored dendritic platinum nanostructures as a robust and efficient direct formic acid fuel cell anode. New J Chem 43(10):4100–4105

    Article  CAS  Google Scholar 

  33. Li C, Luo M, Xia Z, Guo S (2019) High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. Nano Mater Sci 2:309–315

    Article  Google Scholar 

  34. Li P, Chen W (2019) Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin J Catal 40(1):4–22

    Article  CAS  Google Scholar 

  35. Ostroverkh A, Johánek V, Dubau M, Kúš P, Khalakhan I, Šmíd B, Fiala R, Václavů M, Ostroverkh Y, Matolín V (2019) Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. Int J Hydrogen Energy 44(35):19344–19356

    Article  CAS  Google Scholar 

  36. Zheng Z, Yang F, Lin C, Zhu F, Shen S, Wei G, Zhang J (2020) Design of gradient cathode catalyst layer (CCL) structure for mitigating Pt degradation in proton exchange membrane fuel cells (PEMFCs) using mathematical method. J Power Sources 451:227729

    Article  CAS  Google Scholar 

  37. Sun SH, Yang DQ, Villers D, Zhang GX, Sacher E, Dodelet JP (2008) Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv Mater 20(3):571–574

    Article  CAS  Google Scholar 

  38. Liang H-W, Liu S, Gong J-Y, Wang S-B, Wang L, Yu S-H (2009) Ultrathin Te nanowires: an excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv Mater 21(18):1850–1854

    Article  CAS  Google Scholar 

  39. Xia BY, Wu HB, Yan Y, Lou XW, Wang X (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135(25):9480–9485

    Article  CAS  Google Scholar 

  40. Hoque MA, Hassan FM, Higgins D, Choi J-Y, Pritzker M, Knights S, Ye S, Chen Z (2015) Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Adv Mater 27(7):1229–1234

    Article  CAS  Google Scholar 

  41. Sun S, Zhang G, Geng D, Chen Y, Banis MN, Li R, Cai M, Sun X (2010) Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts. Chem A Eur J 16(3):829–835

    Article  CAS  Google Scholar 

  42. Chen J, Herricks T, Geissler M, Xia Y (2004) Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc 126(35):10854–10855

    Article  CAS  Google Scholar 

  43. Chang F, Bai Z, Li M, Ren M, Liu T, Yang L, Zhong C-J, Lu J (2020) Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett 20(4):2416–2422

    Article  CAS  Google Scholar 

  44. Wen R, Xu S, Ma X, Lee Y-C, Yang R (2018) Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule 2(2):269–279

    Article  CAS  Google Scholar 

  45. Razumovskaya IV, Kovalets NP, Bedin SA, Grigor’ev YV (2021) Agglomeration of nanowires on a substrate for surface-enhanced Raman scattering. J Exp Theor Phys 132(5):818–823

    Article  CAS  Google Scholar 

  46. Samantaray D, Gayen M, Roy A, Bellare P, Ravishankar N (2021) Mechanistic understanding of formation of ultrathin single-crystalline pt nanowires. J Phys Chem C 125(49):27458–27464

    Article  CAS  Google Scholar 

  47. Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang QJAC (2013) An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature. Angewandte Chemie 125(16):4502–4505

    Article  Google Scholar 

  48. Chaoquan H, Ting S-W, Tsui J, Chan K-Y (2012) Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor. Int J Hydrogen Energy 37(8):6372–6380. https://doi.org/10.1016/j.ijhydene.2012.01.062

    Article  CAS  Google Scholar 

  49. Loges B, Boddien A, Junge H, Beller MJACIE (2008) Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angewandte Chemie 47(21):3962–3965

    Article  CAS  Google Scholar 

  50. Wang Y-Y (2019) Mechanism, theoretical study of the oxidation of formic acid on a PtPd (1 1 1). Surface 44(1):67–73

    CAS  Google Scholar 

  51. Liu X, Jacob T, Gao W (2022) Progress of fundamental mechanism of formic acid decomposition and electrooxidation. J Energy Chem 70:292–309

    Article  Google Scholar 

  52. Ida T, Nishida M, Hori Y (2019) Revisiting formic acid decomposition by a graph-theoretical approach. J Phys Chem A 123(44):9579–9586

    Article  CAS  Google Scholar 

  53. Zhao L, Xu C, Su H, Liang J, Lin S, Gu L, Wang X, Chen M, Zheng N (2015) Single-crystalline rhodium nanosheets with atomic thickness. Adv Sci 2(6):1500100

    Article  CAS  Google Scholar 

  54. Li L, Wang P, Shao Q, Huang X (2020) Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 49(10):3072–3106

    Article  CAS  Google Scholar 

  55. Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6(1):28–32

    Article  CAS  Google Scholar 

  56. Hwang SY, Zhang M, Zhang C, Ma B, Zheng J, Peng Z (2014) Carbon monoxide in controlling the surface formation of Group VIII metal nanoparticles. Chem Commun 50(90):14013–14016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the support from US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Fuel Cell Technologies Office Award Number DE-EE0008426 and DE-EE0008423, National Renewable Energy Laboratory under Award DE-AC36-08GO28308, and National Energy Technology Laboratory under Award DE-FE0011585. A portion of the research work was carried out at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors also wish to express their appreciation to Dale Hensley, Dayrl Briggs, Alexander Terekhov, Douglas Warnberg, and Dr. Brian Canfield for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yuan Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 385 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Yu, S., Cui, C. et al. Unveiling mechanism of surface-guided platinum nanowire growth. J Mater Sci 57, 12875–12885 (2022). https://doi.org/10.1007/s10853-022-07449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07449-5

Navigation