Skip to main content
Log in

Blue–violet emitting K2CuCl3 compound: facile synthesis, photoluminescence and radioluminescence properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper-based lead-free perovskite derivatives have recently drawn great attention for their excellent optoelectronic properties and potential applications in light-emitting diodes (LEDs) and photodetectors. Herein, facile synthesis methods of cooling crystallization and wet ball milling (WBM) are adopted to synthesize K2CuCl3, resulting in single crystals (SCs) and powder samples, respectively. The as-fabricated K2CuCl3 samples exhibit blue–violet emission, with the highest photoluminescence quantum yield (PL QY) of 70% (under 280 nm excitation), and the photoluminescence (PL) is attributed to the self-trap excitons (STEs) emission. We also test the scintillation properties of K2CuCl3 for X-ray detection and imaging applications. A down-conversion LED is finally made by using K2CuCl3 as phosphor.

Graphical abstract

As-synthesized K2CuCl3 can be used for either photoluminescence under UV light or X-ray imaging under X-ray radiation. -- Present in ms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Xiao Z, Song Z, Yan Y (2019) From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater 31:1803792. https://doi.org/10.1002/adma.201803792

    Article  CAS  Google Scholar 

  2. Luo J, Wang X, Li S et al (2018) Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563:541–545. https://doi.org/10.1038/s41586-018-0691-0

    Article  CAS  Google Scholar 

  3. Tang H, Xu Y, Hu X et al (2021) Lead-free halide double perovskite nanocrystals for light-emitting applications: strategies for boosting efficiency a-nd stability. Adv Sci 8:2004118. https://doi.org/10.1002/advs.202004118

    Article  CAS  Google Scholar 

  4. Li X, Gao X, Zhang X et al (2021) Lead-free halide perovskites for light emission: recent advances and perspectives. Adv Sci 8:2003334. https://doi.org/10.1002/advs.202003334

    Article  CAS  Google Scholar 

  5. Luo J, Hu M, Niu G, Tang J (2019) Lead-free halide perovskites and perovskite variants as phosphors toward light-emitting applications. ACS Appl Mater Interfaces 11:31575–31584. https://doi.org/10.1021/acsami.9b08407

    Article  CAS  Google Scholar 

  6. Ma Z, Wang L, Ji X et al (2020) Lead-free metal halide perovskites and perovskite derivatives as an environmentally friendly emitter for light-emitting device applications. J Phys Chem Lett 11:5517–5530. https://doi.org/10.1021/acs.jpclett.0c01378

    Article  CAS  Google Scholar 

  7. Gao Y, Wei Z, Yoo P et al (2019) Highly stable lead-free Perovskite field-effect transistors incorporating linear π-conjugated organic ligands. J Am Chem Soc 141:15577–15585. https://doi.org/10.1021/jacs.9b06276

    Article  CAS  Google Scholar 

  8. Bhaumik S, Ray S, Batabyal SK (2020) Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications. Mater Today Chem 18:100363. https://doi.org/10.1016/j.mtchem.2020.100363

    Article  CAS  Google Scholar 

  9. Zhu H, Liu A, Shim KI et al (2020) High-performance and reliable lead-free layered-perovskite transistors. Adv Mater 32:2002717. https://doi.org/10.1002/adma.202002717

    Article  CAS  Google Scholar 

  10. Liu Z, Dai S, Wang Y et al (2020) Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv Funct Mater 30:1906335. https://doi.org/10.1002/adfm.201906335

    Article  CAS  Google Scholar 

  11. Sun J, Yang J, Lee JI et al (2018) Lead-free perovskite nanocrystals for light-emitting devices. J Phys Chem Lett 9:1573–1583. https://doi.org/10.1021/acs.jpclett.8b00301

    Article  CAS  Google Scholar 

  12. Wang A, Muhammad F, Liu Y, Deng Z (2021) Lead-free Mn-doped antimony halide perovskite quantum dots with bright deep-red emission. Chem Commun 57:2677–2680. https://doi.org/10.1039/D0CC08253H

    Article  CAS  Google Scholar 

  13. Ushakova EV, Cherevkov SA, Kuznetsova VA, Baranov AV (2019) Lead-free perovskites for lighting and lasing applications: a minireview. Materials 12:3845. https://doi.org/10.3390/ma12233845

    Article  CAS  Google Scholar 

  14. Wu ZY, Chen YY, Lin L-J, Hsu H-C (2021) Room-temperature near-infr-ared random lasing with tin-based perovskites prepared by CVD processing. J Phys Chem C 125:5180–5184. https://doi.org/10.1021/acs.jpcc.0c11016

    Article  CAS  Google Scholar 

  15. Xing G, Kumar MH, Chong WK et al (2016) Solution-processed Tin-based perovskite for near-infrared lasing. Adv Mater 28:8191–8196. https://doi.org/10.1002/adma.201601418

    Article  CAS  Google Scholar 

  16. Chen L-J, Dai J-H, Lin J-D et al (2018) Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities. ACS Appl Mater Interfaces 10:33307–33315. https://doi.org/10.1021/acsami.8b08474

    Article  CAS  Google Scholar 

  17. Wang C, Gu F, Zhao Z et al (2020) Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv Mater 32:1907623. https://doi.org/10.1002/adma.201907623

    Article  CAS  Google Scholar 

  18. Li J, Duan J, Yang X et al (2021) Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy 80:105526. https://doi.org/10.1016/j.nanoen.2020.105526

    Article  CAS  Google Scholar 

  19. Shin SS, Correa Baena JP, Kurchin RC et al (2018) Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics. Chem Mater 30:336–343. https://doi.org/10.1021/acs.chemmater.7b03227

    Article  CAS  Google Scholar 

  20. Wu C, Zhang Q, Liu Y et al (2018) The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci 5:1700759. https://doi.org/10.1002/advs.201700759

    Article  CAS  Google Scholar 

  21. Yokoyama T, Song T-B, Cao DH et al (2017) The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process. ACS Energy Lett 2:22–28. https://doi.org/10.1021/acsenergylett.6b00513

    Article  CAS  Google Scholar 

  22. Wu C, Du B, Luo W et al (2018) Highly efficient and stable self-powere-d ultraviolet and deep-blue photodetector based on Cs2AgBiBr6/SnO2 hete-rojunction. Adv Opt Mater 6:1800811. https://doi.org/10.1002/adom.201800811

    Article  CAS  Google Scholar 

  23. Guo Z, Li J, Pan R et al (2020) All-inorganic copper(I)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale 12:15560–15576. https://doi.org/10.1039/D0NR04220J

    Article  CAS  Google Scholar 

  24. Zhang Z-X, Li C, Lu Y et al (2019) Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J Phys Chem Lett 10:5343–5350. https://doi.org/10.1021/acs.jpclett.9b02390

    Article  CAS  Google Scholar 

  25. Li Y, Shi Z, Liang W et al (2020) Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Mater Horiz 7:530–540. https://doi.org/10.1039/C9MH01371G

    Article  CAS  Google Scholar 

  26. Wang M, Zeng P, Wang Z, Liu M (2020) Vapor-deposited Cs2AgBiCl6 d-ouble perovskite films toward highly selective and stable ultraviolet photo-detector. Adv Sci 7:1903662. https://doi.org/10.1002/advs.201903662

    Article  CAS  Google Scholar 

  27. Chen H, Pina JM, Yuan F et al (2020) Multiple self-trapped emissions in the lead-free halide Cs3Cu2I5. J Phys Chem Lett 11:4326–4330. https://doi.org/10.1021/acs.jpclett.0c01166

    Article  CAS  Google Scholar 

  28. Liu X, Yu Y, Yuan F et al (2020) Vacuum dual-source thermal-deposited lead-free Cs3Cu2I5 films with high photoluminescence quantum yield for deep-blue light-emitting diodes. ACS Appl Mater Interfaces 12:52967–52975. https://doi.org/10.1021/acsami.0c17029

    Article  CAS  Google Scholar 

  29. Yuan D (2020) Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield. ACS Appl Mater Interfaces 12:38333–38340. https://doi.org/10.1021/acsami.0c09047

    Article  CAS  Google Scholar 

  30. Xie L, Chen B, Zhang F et al (2020) Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes. Photon Res 8:768–775. https://doi.org/10.1364/PRJ.387707

    Article  CAS  Google Scholar 

  31. Jun T, Sim K, Iimura S et al (2018) Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater 30:1804547. https://doi.org/10.1002/adma.201804547

    Article  CAS  Google Scholar 

  32. Benin BM, Dirin DN, Morad V et al (2018) Highly emissive self-trapped excitons in fully inorganic zero-dimensional in halides. Angew Chem Int Ed 57:11329–11333. https://doi.org/10.1002/anie.201806452

    Article  CAS  Google Scholar 

  33. Morad V, Shynkarenko Y, Yakunin S et al (2019) Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and x-ray scintillation. J Am Chem Soc 141:9764–9768. https://doi.org/10.1021/jacs.9b02365

    Article  CAS  Google Scholar 

  34. Wang Y, Song L, Chen Y, Huang W (2020) Emerging new-generation photodetectors based on low-dimensional halide perovskites. ACS Photonics 7:10–28. https://doi.org/10.1021/acsphotonics.9b01233

    Article  CAS  Google Scholar 

  35. Yuan F, Zheng X, Johnston A et al (2020) Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci Adv 6:eabb0253. https://doi.org/10.1126/sciadv.abb0253

    Article  CAS  Google Scholar 

  36. Creason TD, McWhorter TM, Bell Z et al (2020) K2CuX3 (X = Cl, Br): a-ll-inorganic lead-free blue emitters with near-unity photoluminescence qu-antum yield. Chem Mater 32:6197–6205. https://doi.org/10.1021/acs.chemmater.0c02098

    Article  CAS  Google Scholar 

  37. Gao W, Yin L, Yuan J-H et al (2020) Lead-free violet-emitting K2CuCl3 single crystal with high photoluminescence quantum yield. Org Electron 86:105903. https://doi.org/10.1016/j.orgel.2020.105903

    Article  CAS  Google Scholar 

  38. Qian L, Zhongwei C, Bo Y et al (2020) Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units. J Am Chem Soc 142:1786–1791. https://doi.org/10.1021/jacs.9b13419

    Article  CAS  Google Scholar 

  39. Vasquez RP (1993) CuCl by XPS. Surf Sci Spect 2:138–143. https://doi.org/10.1116/1.1247732

    Article  CAS  Google Scholar 

  40. Pejjai B, Reddivari M, Kotte TRR (2020) Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS. Mater Chem Phys 239:122030. https://doi.org/10.1016/j.matchemphys.2019.122030

    Article  CAS  Google Scholar 

  41. Maddalena F, Tjahjana L, Xie A et al (2019) Inorganic, organic, and perovskite halides with nanotechnology for high–light yield X- and γ-ray scintillators. Curr Comput-Aided Drug Des 9:88. https://doi.org/10.3390/cryst9020088

    Article  CAS  Google Scholar 

  42. Wanarak C, Chewpraditkul W, Phunpueok A (2012) Light yield non-prop-ortionality and energy resolution of Lu1.95Y0.05SiO5: Ce and Lu2SiO5: Ce sc-intillation crystals. Procedia Eng 32:765–771. https://doi.org/10.1016/j.proeng.2012.02.010

    Article  CAS  Google Scholar 

  43. Yang B, Yin L, Niu G et al (2019) Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv Mater 31:1904711. https://doi.org/10.1002/adma.201904711

    Article  CAS  Google Scholar 

  44. Watanabe K, Koshimizu M, Yanagida T et al (2016) Luminescence and scintillation properties of La- and La, Ag-doped CsPbCl3 single crystals. Jpn J Appl Phys 55:02BC20. https://doi.org/10.7567/JJAP.55.02BC20

    Article  CAS  Google Scholar 

  45. Kawano N, Nakauchi D, Kimura H et al (2019) Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1-xMnxBr4. Jpn J Appl Phys 58:082004. https://doi.org/10.7567/1347-4065/ab2e7c

    Article  CAS  Google Scholar 

  46. Hu Q, Deng Z, Hu M et al (2018) X-ray scintillation in lead-free double perovskite crystals. Sci China Chem 61:1581–1586. https://doi.org/10.1007/s11426-018-9308-2

    Article  CAS  Google Scholar 

  47. Cao F, Yu D, Ma W et al (2020) Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial conc-ept. ACS Nano 14:5183–5193. https://doi.org/10.1021/acsnano.9b06114

    Article  CAS  Google Scholar 

  48. Chen Q, Wu J, Ou X et al (2018) All-inorganic perovskite nanocrystal scintillators. Nature 561:88–93. https://doi.org/10.1038/s41586-018-0451-1

    Article  CAS  Google Scholar 

  49. Gao W, Niu G, Yin L et al (2020) One-dimensional all-inorganic K2CuBr3 with violet emission as efficient X-ray scintillators. ACS Appl Electron Mater 2:2242–2249. https://doi.org/10.1021/acsaelm.0c00414

    Article  CAS  Google Scholar 

  50. Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226. https://doi.org/10.1021/bi034593c

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  52. Langreth D, Mehl M (1983) Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B 28:1809. https://doi.org/10.1103/PhysRevB.28.1809

    Article  CAS  Google Scholar 

  53. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  54. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB1002900), the Fundamental Research Funds for the Central Universities (No. 2021CX02058), National Natural Science Foundation of China (Nos. 61727808, 21701009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawen Xiao or Bingkun Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Lin, Z., Xie, L. et al. Blue–violet emitting K2CuCl3 compound: facile synthesis, photoluminescence and radioluminescence properties. J Mater Sci 57, 10260–10270 (2022). https://doi.org/10.1007/s10853-022-07288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07288-4

Navigation