Skip to main content
Log in

Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyacrylamide hydrogels have made an immensely important place in various fields having bio-compatibility, high water-holding capacity, tunability and cheap synthesis, which has attracted researchers’ attention. Polyacrylamide can be chemically infused with other elements or compounds to find applications in magnetic biosensors, drug delivery, cartilage repair and wound dressing. This paper throws light on the brief introduction of hydrogels and their classification. The polymerization method of polyacrylamide hydrogel followed by its clinical uses (cell biology and drug delivery) is adorned in the report. Keeping at the centre, the recent highlights on the research work done on polyacrylamide hydrogel composites using various reinforcing additives are crucially explored first time in the present report. The improvement practice in the strength, bonding and self-healing of the polyacrylamide hydrogel is demonstrated by the encapsulation of nanoparticles like silicon, carbon nanotubes, gelatine, cellulose, etc. The clinical aspects of the polyacrylamide are corroborated by the cell viability, proliferation and migration. Thus, polyacrylamide hydrogels are emerging candidates, precisely illuminated in the review, which can be an influential highlight designed for upcoming research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Varaprasad K, Vimala K, Raghavendra GM, Jayaramudu T, Sadiku ER, Ramam K (2015) Cell encapsulation in polymeric self-assembled hydrogels, Elsevier Inc. https://doi.org/10.1016/B978-0-323-32889-0.00010-8.

  2. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym - Plast Technol Eng 50:1475–1486

    Article  CAS  Google Scholar 

  3. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  4. Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437

    Article  CAS  Google Scholar 

  5. Wen J, Zhang X, Pan M, Yuan J, Jia Z, Zhu L (2020) A robust, tough and multifunctional polyurethane/tannic acid hydrogel fabricated by physical-chemical dual crosslinking. Polymers (Basel) 12:239–253

    Article  CAS  Google Scholar 

  6. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 69:1638–1649

    Article  CAS  Google Scholar 

  7. Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel) 3:1746–1767. https://doi.org/10.3390/ma3031746

    Article  CAS  Google Scholar 

  8. Zhou F, Yang Y, Zhang W, Liu S, Shaikh AB, Yang L et al (2022) Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by minimally invasive therapy. Appl Mater Today 26:101290. https://doi.org/10.1016/j.apmt.2021.101290

    Article  Google Scholar 

  9. Qin D, Zhang A, Wang N, Yao Y, Chen X, Liu Y (2022) Hydroxybutyl chitosan/ oxidized glucomannan self-healing hydrogels as BMSCs-derived exosomes carriers for advanced stretchable wounds. Appl Mater Today 26:101342. https://doi.org/10.1016/j.apmt.2021.101342

    Article  Google Scholar 

  10. Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I (2016) Hydrogels based on collagen and fibrin - Frontiers and applications. BioNanoMaterials 17:3–12

    Article  Google Scholar 

  11. Zhang H, Cheng J, Ao Q (2021) Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 19:1–24

    Article  Google Scholar 

  12. Khunmanee S, Jeong Y, Park H (2017) Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng 8:1–16

    Article  CAS  Google Scholar 

  13. Awasthi S, Gaur JK, Pandey SK, Bobji MS, Srivastava C (2021) High-strength, strongly bonded nanocomposite hydrogels for cartilage repair. ACS Appl Mater Interf 13:24505–24523

    Article  CAS  Google Scholar 

  14. Kazanskiǐ KS, Rakova GV, Kozlov SI, Stegno EV, Lapienis G (2004) Free-radical polymerization of poly(ethylene oxide) macromonomers with catalytic chain transfer in aqueous solutions. Polym Sci - Ser A 46:214–225

    Google Scholar 

  15. Ali L, Ahmad M, Usman M, Yousuf M (2014) Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym Bull 71:31–46

    Article  CAS  Google Scholar 

  16. Sajjad H, Lillie LM, Lau CM, Ellison CJ, Tolman WB, Reineke TM (2021) Degradable polyanhydride networks derived from itaconic acid. Polym Chem 12:608–617

    Article  CAS  Google Scholar 

  17. Sosnik A, Cohn D, Roman JS, Abraham GA (2003) Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials. J Biomater Sci 14:227–239

    Article  CAS  Google Scholar 

  18. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials Praveen. Adv Sci 2:1400010–1400023

    Article  CAS  Google Scholar 

  19. Tangri A (2014) Polyacrylamide based hydrogels: synthesis, characterization and applications, Int J Pharm Chem Biol Sci. 4: 951–959. http://www.ijpcbs.com/files/volume4-4-2014/18.pdf.

  20. Olpan D, Duran S, Güven O (2002) Synthesis and properties of radiation-induced acrylamide-acrylic acid hydrogels. J Appl Polym Sci 86:3570–3580

    Article  CAS  Google Scholar 

  21. Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471

    Article  CAS  Google Scholar 

  22. Mihǎilescu C, Dumitrescu A, Simionescu BC, Bulacovschi V (2007) Synthesis of polyacrylamide - based hydrogels by simultaneous polymerization/crosslinking. Rev Roum Chim 52:1071–1076

    Google Scholar 

  23. Bajpai SK, Dubey S (2004) Synthesis and swelling kinetics of a pH-sensitive terpolymeric hydrogel system. Iran Polym J English Ed 13:189–203

    CAS  Google Scholar 

  24. Wichterle O, Lim D (1960) Industrial research associations: some taxation problems. Nature 185:63–64

    Article  Google Scholar 

  25. Andrade JD, Nagaoka S, Cooper S, Okano T, Kim SW (1987) Surfaces and blood compatibility current hypotheses. Am Sot Artif Intern Organs 10:75–84

    Article  Google Scholar 

  26. Grinnell F (1987) Fibronectin adsorption on materials surfaces. In: Leonard EF, Turitto VT, Vroman L (Eds.) Blood in confact with natural and arfificial surfaces, New York Academy Science. New York, pp 280–290.

  27. Grinnell F, Feld MK (1982) Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem 257:4888–4893

    Article  CAS  Google Scholar 

  28. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS (1988) Cell adhesion to a series of hydrophili–hydrophobic copolymers studies with a spinning disc apparatus. J Biomed Mater Res 22:383–404

    Article  CAS  Google Scholar 

  29. Owens NF, Gingell D, Rutter PR (1987) Inhibition of cell adhesion by a synthetec polymer adsorbed to glass shown under defined hydrodynamic stress. J Cell Sci 87:667–675

    Article  CAS  Google Scholar 

  30. Smetana K, Sulc J, Krcova Z (1987) Physicochemical aspects of the giant multinucleate cell formation. Exp Mol Pafhol 47:271–278

    Article  CAS  Google Scholar 

  31. Smetana K, Vacík J, Součková D, Krčová Z, Šulc J (1990) The influence of hydrogel functional groups on cell behavior. J Biomed Mater Res 24:463–470

    Article  CAS  Google Scholar 

  32. Smetana K, Vacik J, Součková D, Pitrova S (1993) The influence of chemical functional groups on implant biocompatibility. Clin Mater 13:47–49

    Article  CAS  Google Scholar 

  33. Peppas NA, Klier J (1991) Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels. J Control Release 16:203–214

    Article  CAS  Google Scholar 

  34. Macdonald DDMD (1977) The mathematics of diffusion, In: Transient Technical Electrochemistry, Plenum Press. New York, pp 47–67.

  35. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5:112–117

    CAS  Google Scholar 

  36. Kalshetti PP, Rajendra VB, Dixit DN, Parekh PP (2012) Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 4:1–7

    CAS  Google Scholar 

  37. Syková E, Jendelová P, Urdzíková L, Lesný P, Hejčl A (2006) Bone marrow stem cells and polymer hydrogels - two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129

    Article  CAS  Google Scholar 

  38. Bavaresco VP, Zavaglia CAC, Reis MC, Gomes JR (2008) Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage. Wear 265:269–277

    Article  CAS  Google Scholar 

  39. Cretu A, Gattin R, Brachais L, Barbier-Baudry D (2004) Synthesis and degradation of poly (2-hydroxyethyl methacrylate)-graft-poly (ε-caprolactone) copolymers. Polym Degrad Stab 83:399–404

    Article  CAS  Google Scholar 

  40. Gong C, Shi S, Dong P (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99

    Article  CAS  Google Scholar 

  41. Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643

    Article  CAS  Google Scholar 

  42. Kim B, Peppas NA (2003) Poly(ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed Microdevices 5:333–341

    Article  CAS  Google Scholar 

  43. Benamer S, Mahlous M, Boukrif A, Mansouri B, Youcef SL (2006) Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl. Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 248:284–290

    Article  CAS  Google Scholar 

  44. Cascone MG, Lazzeri L, Sparvoli E, Scatena M, Serino LP, Danti S (2004) Morphological evaluation of bioartificial hydrogels as potential tissue engineering scaffolds. J Mater Sci Mater Med 15:1309–1313. https://doi.org/10.1007/s10856-004-5739-z

    Article  CAS  Google Scholar 

  45. Lugão AB, Rogero SO, Malmonge SM (2002) Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat Phys Chem 63:543–546

    Article  Google Scholar 

  46. Wang M, Xu L, Hu H, Zhai M, Peng J, Nho Y et al (2007) Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 265:385–389

    Article  CAS  Google Scholar 

  47. Gong CY, Shi S, Dong PW, Kan B, Gou ML, Wang XH et al (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99. https://doi.org/10.1016/j.ijpharm.2008.08.027

    Article  CAS  Google Scholar 

  48. Oh SB, Choi YK, Cho CS (2003) Thermoplastic hydrogel based on pentablock copolymer consisting of poly(γ-benzyl L-glutamate) and poloxamer. J Appl Polym Sci 88:2649–2656

    Article  CAS  Google Scholar 

  49. Gils PS, Ray D, Sahoo PK (2010) Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol 46:237–244

    Article  CAS  Google Scholar 

  50. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 83:1128–1139

    Article  CAS  Google Scholar 

  51. Singh K, Ohlan A, Saini P, Dhawan SK (2008) composite – super paramagnetic behavior and variable range hopping 1D conduction mechanism – synthesis and characterization, Polym. Adv. Technol. 229–236

  52. Erukhimovich I, de la Cruz MO (2004) Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions, 48: 1749–1756. https://doi.org/10.1002/polb.

  53. Lipatov YS (2002) Polymer blends and interpenetrating polymer networks at the interface with solids. Prog Polym Sci 27:1721–1801

    Article  CAS  Google Scholar 

  54. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  55. Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    Article  CAS  Google Scholar 

  56. Chivukula P, Dušek K, Wang D, Dušková-Smršková M, Kopečková P, Kopeček J (2006) Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials 27:1140–1151

    Article  CAS  Google Scholar 

  57. Kim SC, Klempner D, Frisch KC, Frisch HL (1977) Polyurethane interpenetrating polymer networks. V. Engineering properties of polyurethane–poly(methyl methacrylate) IPN’s. J. Appl. Polym. Sci. 21:1289–1295

    Article  CAS  Google Scholar 

  58. Liu M, Su H, Tan T (2012) Synthesis and properties of thermo- and pH-sensitive poly(N- isopropylacrylamide)/polyaspartic acid IPN hydrogels. Carbohydr Polym 87:2425–2431. https://doi.org/10.1016/j.carbpol.2011.11.010

    Article  CAS  Google Scholar 

  59. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 49:1993–2007

    Article  CAS  Google Scholar 

  60. Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT (2021) Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J Bioresour Bioprod 6:168–185

    Article  CAS  Google Scholar 

  61. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J Bioresour Bioprod 6:75–81. https://doi.org/10.1016/j.jobab.2021.01.003

    Article  CAS  Google Scholar 

  62. Porter TL, Stewart R, Reed J, Morton K (2007) Models of hydrogel swelling with applications to hydration sensing. Sensors 7:1980–1991

    Article  CAS  Google Scholar 

  63. Garg S, Garg A, Vishwavidyalaya RD (2016) Hydrogel: classification , properties , preparation and technical features, Asian J Biomater Res 2: 163–170. https://www.researchgate.net/publication/316075989%0AHydrogel:

  64. Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide andgraphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194

    Article  CAS  Google Scholar 

  65. Wang L, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 4:2830–2837

    Article  CAS  Google Scholar 

  66. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM (2013) Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194

    Article  CAS  Google Scholar 

  67. Jayaramudu T, Ko HU, Kim HC, Kim JW, Kim J (2019) Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: Swelling kinetics, temperature, and pH effects, Materials (Basel). 12.

  68. Mahon R, Balogun Y, Oluyemi G, Njuguna J (2020) Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN Appl Sci 2:1–15

    Article  CAS  Google Scholar 

  69. Li SN, Li B, Gong LX, Yu ZR, Feng Y, Jia D et al (2019) Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane. Mater Des 162:162–170. https://doi.org/10.1016/j.matdes.2018.11.045

    Article  CAS  Google Scholar 

  70. Pourjavadi A, Tavakolizadeh M, Hosseini SH, Rabiee N, Bagherzadeh M (2020) Highly stretchable, self-adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. J Polym Sci 58:2062–2073

    Article  CAS  Google Scholar 

  71. Voronova MI, Surov OV, Afineevskii AV, Zakharov AG (2020) Properties of polyacrylamide composites reinforced by cellulose nanocrystals, Heliyon. 6.

  72. Awasthi S, Gaur JK, Bobji MS (2020) Advanced ferrogels with high magnetic response and wear resistance using carbon nanotubes. J Alloys Compd 848:156259–156269

    Article  CAS  Google Scholar 

  73. Shi Y, Li J, Xiong D, Li L, Liu Q (2021) Mechanical and tribological behaviors of PVA/PAAm double network hydrogels under varied strains as cartilage replacement. J Appl Polym Sci 138:1–12

    Article  Google Scholar 

  74. Deng Y, Sun J, Ni X, Yu B (2020) Tribological properties of hierarchical structure artificial joints with poly acrylic acid (AA) - poly acrylamide (AAm) hydrogel and Ti6Al4V substrate, J Polym Res 27.

  75. Lu Y, Yue Y, Ding Q, Mei C, Xu X, Wu Q et al (2021) Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl Mater Interfaces 13:50281–50297

    Article  CAS  Google Scholar 

  76. Lu Y, Han J, Ding Q, Yue Y, Xia C, Ge S et al (2021) TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 28:1469–1488

    Article  CAS  Google Scholar 

  77. Blyakhman FA, Safronov AP, Makarova EB, Fadeyev FA, Shklyar TF, Shabadrov PA, et al (2021) Magnetic properties of iron oxide nanoparticles do not essentially contribute to ferrogel biocompatibility, Nanomaterials. 11

  78. Filho E, Brito E, Silva R, Streck L, Bohn F, Fonseca J (2020) Superparamagnetic polyacrylamide/magnetite composite gels. J Dispers Sci Technol. 0:1–9

    Article  CAS  Google Scholar 

  79. Mbituyimana B, Mao L, Hu S, Ullah MW, Chen K, Fu L et al (2021) Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment. J Bioresour Bioprod 6:129–141. https://doi.org/10.1016/j.jobab.2021.02.003

    Article  CAS  Google Scholar 

  80. Madni A, Kousar R, Naeem N, Wahid F (2021) Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J Bioresour Bioprod 6:11–25

    Article  CAS  Google Scholar 

  81. Fatima A, Yasir S, Khan MS, Manan S, Ullah MW, Ul-Islam M (2021) Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J Bioresour Bioprod 6:26–32. https://doi.org/10.1016/j.jobab.2020.11.002

    Article  CAS  Google Scholar 

  82. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  83. Klöck G, Frank H, Houben R, Zekorn T, Horcher A, Siebers U et al (1994) Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 40:638–643

    Article  Google Scholar 

  84. Awasthi S (2021) A review on hydrogels and ferrogels for biomedical applications. Jom. https://doi.org/10.1007/s11837-021-04734-7

    Article  Google Scholar 

  85. Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A et al (2021) An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol 172:381–393. https://doi.org/10.1016/j.ijbiomac.2021.01.069

    Article  CAS  Google Scholar 

  86. Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  CAS  Google Scholar 

  87. Torres-Figueroa AV, Pérez-Martínez CJ, Del Castillo-Castro T, Bolado-Martínez E, Corella-Madueño MAG, García-Alegría AM, et al (2020) Composite hydrogel of poly(acrylamide) and starch as potential system for controlled release of amoxicillin and inhibition of bacterial growth, J Chem 2020.

  88. Kaur SP, Rao R, Nanda S (2011) Amoxicillin: a broad spectrum antibiotic. Int J Pharm Pharm Sci 3:30–37

    CAS  Google Scholar 

  89. Huang W, Wang Y, Mcmullen LM, Mcdermott MT, Deng H, Du Y et al (2019) Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydr Polym 222:114977

    Article  CAS  Google Scholar 

  90. Qiao Z, Tran L, Parks J, Zhao Y, Hai N, Zhong Y et al (2021) Highly stretchable gelatin-polyacrylamide hydrogel for potential transdermal drug release. Nano Sel 2:107–115

    Article  CAS  Google Scholar 

  91. Abraham GA, De Queiroz AAA, Román JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22:1971–1985

    Article  CAS  Google Scholar 

  92. Chen C, Wang Y, Meng T, Wu Q, Fang L, Zhao D et al (2019) Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26:8843–8851

    Article  CAS  Google Scholar 

  93. Soppimath KS, Kulkarni AR, Aminabhavi TM (2001) Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. J Control Release 75:331–345

    Article  CAS  Google Scholar 

  94. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromol 6:2927–2929

    Article  CAS  Google Scholar 

  95. Schmidt B (1996) Membranes in artificial organs. Artif Organs 20:375–380

    Article  CAS  Google Scholar 

  96. Darnell MC, Sun JY, Mehta M, Johnson C, Arany PR, Suo Z et al (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048

    Article  CAS  Google Scholar 

  97. Fernández E, López D, López-Cabarcos E, Mijangos C (2005) Viscoelastic and swelling properties of glucose oxidase loaded polyacrylamide hydrogels and the evaluation of their properties as glucose sensors. Polymer (Guildf) 46:2211–2217

    Article  CAS  Google Scholar 

  98. Rosiak J, Burozak K, Pȩkala W (1983) Polyacrylamide hydrogels as sustained release drug delivery dressing materials. Radiat Phys Chem 22:907–915

    CAS  Google Scholar 

  99. Lloyd AW, Faragher RGA, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22:769–785

    Article  CAS  Google Scholar 

  100. Bai Z, Dan W, Yu G, Wang Y, Chen Y, Huang Y et al (2018) Tough and tissue-adhesive polyacrylamide/collagen hydrogel with dopamine-grafted oxidized sodium alginate as crosslinker for cutaneous wound healing. RSC Adv 8:42123–42132

    Article  CAS  Google Scholar 

  101. Xue H, Hu L, Xiong Y, Zhu X, Wei C, Cao F et al (2019) Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydr Polym 226:115302

    Article  CAS  Google Scholar 

  102. Talu S, Talu S, Giovanzana S, Shah RD (2011) A brief history of contact lenses. HVM Bioflux 3:33–37

    Google Scholar 

  103. Madaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burn Trauma 2:153–161

    Article  Google Scholar 

  104. Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: Indications and best use. Clin Tech Equine Pract 3:148–163

    Article  Google Scholar 

  105. Jones V, Grey JE, Harding KG (2006) ABC of wound healing: Wound dressings. Br Med J 332:777–780

    Article  Google Scholar 

Download references

Acknowledgements

SA thanks the University Grant Commission (UGC), New Delhi, India, for providing Dr. D. S. Kothari Postdoctoral Fellowship (CH/19-20/0029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shikha Awasthi or Chandan Srivastava.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, S., Gaur, J.K., Bobji, M.S. et al. Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. J Mater Sci 57, 8041–8063 (2022). https://doi.org/10.1007/s10853-022-07146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07146-3

Navigation