Skip to main content
Log in

Bottom-up coarse-grain modeling of nanoscale shear bands in shocked α-RDX

  • Computational Materials Design
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An important mechanism of detonation initiation in shock compressed energetic molecular crystals is plastic strain localization producing nanoscale shear bands having a pattern that is strikingly similar across a number of crystals of different symmetries. Particle-based coarse-graining emerges as an uncontested approach to model such phenomena, but requires the development of coarse-grain (CG) force fields for molecular crystals. In this paper, we continue our work on the particle-based MSCG/FM (multiscale coarse-graining through force-matching) modeling of hexahydro-1,3,5-trinitro-s-triazine (RDX) [S. Izvekov and B. M. Rice, J. Chem. Phys. 155: 064503 (2021)], where we reported a one-site density-dependent CG force field for the α-RDX crystal. Perhaps the most distinct feature of that force field, referred to as the True-Crystal density-dependent (RDX-TC-DD) model, is its ability to predict the structure of α-RDX. We present the method to extend existing density-dependent CG force fields to what we term energy-conserving variants, which are conservative force fields with explicitly computable potential energy functions, and apply the method to obtain the RDX-TC-DDE model, an energy-conserving extension of the RDX-TC-DD force field. We then apply the isoenergetic dissipative particle dynamics (DPD-E) method using the RDX-TC-DDE force field to study the response of α-RDX to shock compression, demonstrating nucleation of nanoscale shear bands associated with the elastic–plastic transition. The RDX-TC-DDE model and overall workflow open up possibilities to perform high quality simulation studies of shocked molecular energetic materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Field JE (1992) Hot-spot ignition mechanisms for explosives, accounts Chem. Res 25:489–496. https://doi.org/10.1021/ar00023a002

    Article  CAS  Google Scholar 

  2. Holian BL, Lomdahl PS (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280:2085–2088. https://doi.org/10.1126/science.280.5372.2085

    Article  CAS  Google Scholar 

  3. Jaramillo E, Sewell TD, Strachan A (2007) Atomic-level view of inelastic deformation in a shock loaded molecular crystal. Phys Rev B 76:064112. https://doi.org/10.1103/PhysRevB.76.064112

    Article  CAS  Google Scholar 

  4. Rimoli JJ, Gurses E, Ortiz M (2010) Shock-induced subgrain microstructures as possible homogenous sources of hot spots and initiation sites in energetic polycrystals. Phys Rev B 81:014112. https://doi.org/10.1103/PhysRevB.81.014112

    Article  CAS  Google Scholar 

  5. Winter RE, Field JE (1975) Role of localized plastic-flow in impact initiation of explosives. Proc R Soc Lond A-Math Phys Sci 343:399–413. https://doi.org/10.1098/rspa.1975.0074

    Article  CAS  Google Scholar 

  6. Dodd B, Bai Y (2012) Adiabatic shear localization: frontiers and advances. Elsevier Science Ltd, London

    Google Scholar 

  7. Cawkwell MJ, Sewell TD, Zheng LQ, Thompson DL (2008) Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys Rev B 78:014107. https://doi.org/10.1103/PhysRevB.78.014107

    Article  CAS  Google Scholar 

  8. Bedrov D, Hooper JB, Smith GD, Sewell TD (2009) Shock-induced transformations in crystalline RDX: a uniaxial constant-stress hugoniostat molecular dynamics simulation study. J Chem Phys 131:034712. https://doi.org/10.1063/1.3177350

    Article  CAS  Google Scholar 

  9. Austin RA, Barton NR, Reaugh JE, Fried LE (2015) Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J Appl Phys 117:185902. https://doi.org/10.1063/1.4918538

    Article  CAS  Google Scholar 

  10. Kroonblawd MP, Fried LE (2020) High explosive ignition through chemically activated nanoscale shear bands. Phys Rev Lett 124:206002. https://doi.org/10.1103/PhysRevLett.124.206002

    Article  CAS  Google Scholar 

  11. Coffey CS, Sharma J (2001) Lattice softening and failure in severely deformed molecular crystals. J Appl Phys 89:4797–4802. https://doi.org/10.1063/1.1358319

    Article  CAS  Google Scholar 

  12. Kartha S, Krumhansl JA, Sethna JP, Wickham LK (1995) Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys Rev B 52:803–822. https://doi.org/10.1103/PhysRevB.52.803

    Article  CAS  Google Scholar 

  13. Saxena A, Wu Y, Lookman T, Shenoy SR, Bishop AR (1997) Hierarchical pattern formation in elastic materials. Physica A 239:18–34. https://doi.org/10.1016/s0378-4371(96)00469-4

    Article  CAS  Google Scholar 

  14. Pal A, Picu CR (2017) Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal alpha-RDX. Model Simul Mater Sci Eng 25:015006. https://doi.org/10.1088/1361-651x/25/1/015006

    Article  CAS  Google Scholar 

  15. Voth GA (ed) (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press, Boca Raton

    Google Scholar 

  16. Espanol P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901. https://doi.org/10.1063/1.4979514

    Article  CAS  Google Scholar 

  17. Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160. https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  18. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  19. Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115:5015–5026. https://doi.org/10.1063/1.1396848

    Article  CAS  Google Scholar 

  20. Trofimov SY, Nies ELF, Michels MAJ (2002) Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys 117:9383–9394. https://doi.org/10.1063/1.1515774

    Article  CAS  Google Scholar 

  21. Merabia S, Pagonabarraga I (2007) Density dependent potentials: structure and thermodynamics. J Chem Phys 127:054903. https://doi.org/10.1063/1.2751496

    Article  CAS  Google Scholar 

  22. Ghoufi A, Emile J, Malfreyt P (2013) Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces. Eur Phys J E 36:10. https://doi.org/10.1140/epje/i2013-13010-7

    Article  CAS  Google Scholar 

  23. Brennan JK, Lisal M, Moore JD, Izvekov S, Schweigert IV, Larentzos JP (2014) Coarse-grain model simulations of nonequilibrium dynamics in heterogeneous materials. J Phys Chem Lett 5:2144–2149. https://doi.org/10.1021/jz500756s

    Article  CAS  Google Scholar 

  24. Avalos JB, Mackie AD (1997) Dissipative particle dynamics with energy conservation. Europhys Lett 40:141–146. https://doi.org/10.1209/epl/i1997-00436-6

    Article  CAS  Google Scholar 

  25. Espanol P (1997) Dissipative particle dynamics with energy conservation. Europhys Lett 40:631–636. https://doi.org/10.1209/epl/i1997-00515-8

    Article  CAS  Google Scholar 

  26. Lisal M, Brennan JK, Avalos JB (2011) Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. J Chem Phys 135:204105. https://doi.org/10.1063/1.3660209

    Article  CAS  Google Scholar 

  27. Izvekov S (2019) Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics. J Chem Phys 151:104109. https://doi.org/10.1063/1.5096655

    Article  CAS  Google Scholar 

  28. Hijon C, Espanol P, Vanden-Eijnden E, Delgado-Buscalioni R (2010) Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss 144:301–322. https://doi.org/10.1039/b902479b

    Article  CAS  Google Scholar 

  29. Izvekov S (2021) Mori-Zwanzig projection operator formalism: particle-based coarse-grained dynamics of open classical systems far from equilibrium. Phys Rev E 104:024121. https://doi.org/10.1103/PhysRevE.104.024121

    Article  CAS  Google Scholar 

  30. Izvekov S, Parrinello M, Burnham CJ, Voth GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys 120:10896–10913. https://doi.org/10.1063/1.1739396

    Article  CAS  Google Scholar 

  31. Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105. https://doi.org/10.1063/1.2038787

    Article  CAS  Google Scholar 

  32. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473. https://doi.org/10.1021/jp044629q

    Article  CAS  Google Scholar 

  33. Noid WG, Chu JW, Ayton GS et al (2008) The multiscale coarse-graining method. I. a rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128:244114. https://doi.org/10.1063/1.2938860

    Article  CAS  Google Scholar 

  34. Noid WG, Liu P, Wang Y et al (2008) The multiscale coarse-graining method. II. numerical implementation for coarse-grained molecular models. J Chem Phys 128:244115. https://doi.org/10.1063/1.2938857

    Article  CAS  Google Scholar 

  35. Izvekov S, Chung PW, Rice BM (2011) Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine). J Chem Phys 135:044112. https://doi.org/10.1063/1.3607603

    Article  CAS  Google Scholar 

  36. Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139:090901. https://doi.org/10.1063/1.4818908

    Article  CAS  Google Scholar 

  37. Moore JD, Barnes BC, Izvekov S et al (2016) A coarse-grain force field for RDX: density dependent and energy conserving. J Chem Phys 144:104501. https://doi.org/10.1063/1.4942520

    Article  CAS  Google Scholar 

  38. Izvekov S, Rice BM (2014) Multi-scale coarse-graining of non-conservative interactions in molecular liquids. J Chem Phys 140:104104. https://doi.org/10.1063/1.4866142

    Article  CAS  Google Scholar 

  39. Izvekov S (2017) Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit. Phys Rev E 95:013303. https://doi.org/10.1103/PhysRevE.95.013303

    Article  Google Scholar 

  40. Izvekov S, Rice BM (2021) Bottom-up coarse-grain modeling of plasticity and nanoscale shear bands in alpha-RDX. J Chem Phys 155:064503. https://doi.org/10.1063/5.0057223

    Article  CAS  Google Scholar 

  41. Izvekov S, Chung PW, Rice BM (2010) The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials. J Chem Phys 133:064109. https://doi.org/10.1063/1.3464776

    Article  CAS  Google Scholar 

  42. Sanyal T, Shell MS (2016) Coarse-grained models using local-density potentials optimized with the relative entropy: application to implicit solvation. J Chem Phys 145:034109. https://doi.org/10.1063/1.4958629

    Article  CAS  Google Scholar 

  43. Warren PB (2013) No-go theorem in many-body dissipative particle dynamics. Phys Rev E 87:045303. https://doi.org/10.1103/PhysRevE.87.045303

    Article  CAS  Google Scholar 

  44. Warren PB (2003) Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68:066702. https://doi.org/10.1103/PhysRevE.68.066702

    Article  CAS  Google Scholar 

  45. Kinjo T, Hyodo S-a (2007) Equation of motion for coarse-grained simulation based on microscopic description. Phys Rev E 75:051109. https://doi.org/10.1103/PhysRevE.75.051109

    Article  CAS  Google Scholar 

  46. Izvekov S (2013) Microscopic derivation of particle-based coarse-grained dynamics. J Chem Phys 138:134106. https://doi.org/10.1063/1.4795091

    Article  CAS  Google Scholar 

  47. Das A, Andersen HC (2010) The multiscale coarse-graining method. V. isothermal-isobaric ensemble. J Chem Phys 132:164106. https://doi.org/10.1063/1.3394862

    Article  CAS  Google Scholar 

  48. Ashurst WT, Hoover WG (1975) Dense-fluid shear viscosity via nonequilibrium molecular-dynamics. Phys Rev A 11:658–678. https://doi.org/10.1103/PhysRevA.11.658

    Article  Google Scholar 

  49. Holian BL, Hoover WG, Moran B, Straub GK (1980) Shock-wave structure via non-equilibrium molecular-dynamics and navier-stokes continuum mechanics. Phys Rev A 22:2798–2808. https://doi.org/10.1103/PhysRevA.22.2798

    Article  CAS  Google Scholar 

  50. Lisal M, Larentzos JP, Sellers MS, Schweigert IV, Brennan JK (2019) Dissipative particle dynamics with reactions: application to RDX decomposition. J Chem Phys 151:114112. https://doi.org/10.1063/1.5117904

    Article  CAS  Google Scholar 

  51. Choi CS, Prince E (1972) Crystal-structure of cyclotrimethylene-trinitramine, acta crystallogr. Sect B Struct Sci B 28:2857–2862. https://doi.org/10.1107/S0567740872007046

    Article  CAS  Google Scholar 

  52. Rice BM, Chabalowski CF (1997) Ab initio and nonlocal density functional study of 1,3,5-trinitro-s-triazine (RDX) conformers. J Phys Chem A 101:8720–8726. https://doi.org/10.1021/jp972062q

    Article  CAS  Google Scholar 

  53. Mathew N, Picu RC (2011) Molecular conformational stability in cyclotrimethylene trinitramine crystals. J Chem Phys 135:024510. https://doi.org/10.1063/1.3609769

    Article  CAS  Google Scholar 

  54. Smith GD, Bharadwaj RK (1999) Quantum chemistry based force field for simulations of HMX. J Phys Chem B 103:3570–3575. https://doi.org/10.1021/jp984599p

    Article  CAS  Google Scholar 

  55. Bedrov D, Ayyagari C, Smith GD, Sewell TD, Menikoff R, Zaug JM (2002) Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field. J Comput-Aided Mater Des 8:77–85

    Article  Google Scholar 

  56. Weingarten NS (2017). In: Ciezak-Jenkins JA (ed) Special report ARL-SR-0368 Army Research Laboratory. APG, MD

    Google Scholar 

  57. Stell G, Hemmer PC (1972) Phase-transitions due to softness of potential core. J Chem Phys 56:4274. https://doi.org/10.1063/1.1677857

    Article  CAS  Google Scholar 

  58. Hemmer PC, Velasco E, Mederos L, Navascues G, Stell G (2001) Solid-solid transitions induced by repulsive interactions. J Chem Phys 114:2268–2275. https://doi.org/10.1063/1.1321040

    Article  CAS  Google Scholar 

  59. Junghans C, Praprotnik M, Kremer K (2008) Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Soft Matter 4:156–161. https://doi.org/10.1039/b713568h

    Article  CAS  Google Scholar 

  60. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14:136–141. https://doi.org/10.1016/S0263-7855(96)00043-4

    Article  CAS  Google Scholar 

  61. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  62. Larentzos JP, Brennan JK, Moore JD, Lisal M, Mattson WD (2014) Parallel implementation of isothermal and isoenergetic dissipative particle dynamics using shardlow-like splitting algorithms. Comput Phys Commun 185:1987–1998. https://doi.org/10.1016/j.cpc.2014.03.029

    Article  CAS  Google Scholar 

  63. Melchionna S, Ciccotti G, Holian BL (1993) Hoover NPT dynamics for systems varying in shape and size. Mol Phys 78:533–544. https://doi.org/10.1080/00268979300100371

    Article  CAS  Google Scholar 

  64. Khan M, Picu CR (2020) Shear localization in molecular crystal cyclotetramethylene-tetranitramine (β-HMX): constitutive behavior of the shear band. J Appl Phys 128:105902. https://doi.org/10.1063/5.0020561

    Article  CAS  Google Scholar 

  65. Parisi G, Procaccia I, Rainone C, Singh M (2017) Shear bands as manifestation of a criticality in yielding amorphous solids. Proc Natl Acad Sci U S A 114:5577–5582. https://doi.org/10.1073/pnas.1700075114

    Article  CAS  Google Scholar 

  66. Cawkwell MJ, Ramos KJ, Hooks DE, Sewell TD (2010) Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J Appl Phys 107:063512. https://doi.org/10.1063/1.3305630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Brian C. Barnes of the U.S. Army DEVCOM Army Research Laboratory for helpful comments. This work was supported in part by high-performance computer time and resources from the DoD High Performance Computing Modernization Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Izvekov.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekov, S., Larentzos, J.P., Brennan, J.K. et al. Bottom-up coarse-grain modeling of nanoscale shear bands in shocked α-RDX. J Mater Sci 57, 10627–10648 (2022). https://doi.org/10.1007/s10853-022-07069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07069-z

Navigation