Skip to main content

Shock-Induced Chemistry: Molecular Dynamics and Coarse Grain Modeling

  • Chapter
  • First Online:
Computational Approaches for Chemistry Under Extreme Conditions

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 28))

Abstract

The fast loading rates associated with shockwaves in solids make molecular dynamics (MD) a particularly well-suited tool for their study. This chapter focuses on recent methods to study shock-induced chemistry using all-atom reactive MD and coarse -grained simulations and their application. We describe insight on the formation of hot spots formed following the shock-induced collapse of pores and their transition to a deflagration wave in high energy density materials obtained from large-scale MD simulations using the reactive force field ReaxFF . Experimental validation of such simulations is critical to assess the predictive capabilities of these methods to describe new materials and show how to extract observables from the simulations that can be directly contrasted with experiments . Such direct comparisons are not just critical for validation but also contribute to the interpretation of the experimental results. We also describe coarse -grained simulations to study the possibility and effectiveness of shock-induced , endothermic , volume -collapsing reactions; these simulations quantify how the various characteristics of the chemical reactions attenuate the propagating shockwave and provide key information to experimentalists designing and synthesizing such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holian BL, Lomdahl PS (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Sci 280:2085–2088

    Article  CAS  Google Scholar 

  2. Bringa EM, Caro A, Wang Y et al (2005) Ultrahigh strength in nanocrystalline materials under shock loading. Sci 309:1838–1841

    Article  CAS  Google Scholar 

  3. Chen MW, McCauley JW, Dandekar DP, Bourne NK (2006) Dynamic plasticity and failure of high-purity alumina under shock loading. Nat Mater 5:614

    Article  CAS  Google Scholar 

  4. Duvall GE, Graham RA (1977) Phase transitions under shock-wave loading. Rev Mod Phys 49:523

    Article  CAS  Google Scholar 

  5. Kadau K, Germann TC, Lomdahl PS, Holian BL (2002) Microscopic view of structural phase transitions induced by shock waves. Sci 296:1681–1684

    Article  CAS  Google Scholar 

  6. Yang Y, Wang S, Sun Z, Dlott DD (2004) Propagation of shock-induced chemistry in nanoenergetic materials: the first micrometer. J Appl Phys 95:3667–3676

    Article  CAS  Google Scholar 

  7. Strachan A, van Duin ACT, Chakraborty D et al (2003) Shock waves in high-energy materials: the initial chemical events in Nitramine RDX. Phys Rev Lett 91:098301. https://doi.org/10.1103/PhysRevLett.91.098301

    Article  CAS  PubMed  Google Scholar 

  8. Hirai H, Kondo K (1991) Modified phases of diamond formed under shock compression and rapid quenching. Sci 253:772–774

    Google Scholar 

  9. Levitas VI, Ravelo R (2012) Virtual melting as a new mechanism of stress relaxation under high strain rate loading. Proc Natl Acad Sci 109:13204–13207

    Article  CAS  Google Scholar 

  10. Wood MA, Cherukara MJ, Antillon E, Strachan A (2017) Molecular dynamics simulations of shock loading of materials: a review and tutorial. Rev Comput Chem 43–92

    Google Scholar 

  11. Strachan A, Klimeck G, Lundstrom M (2010) Cyber-enabled simulations in nanoscale science and engineering. Comput Sci Eng 12:12–17

    Article  Google Scholar 

  12. Reed EJ, Fried LE, Joannopoulos JD (2003) A method for tractable dynamical studies of single and double shock compression. Phys Rev Lett 90:235503. https://doi.org/10.1103/PhysRevLett.90.235503

    Article  CAS  PubMed  Google Scholar 

  13. Maillet J-B, Mareschal M, Soulard L et al (2000) Uniaxial hugoniostat: a method for atomistic simulations of shocked materials. Phys Rev E 63:016121. https://doi.org/10.1103/PhysRevE.63.016121

    Article  CAS  Google Scholar 

  14. Ravelo R, Holian BL, Germann TC, Lomdahl PS (2004) Constant-stress hugoniostat method for following the dynamical evolution of shocked matter. Phys Rev B 70:014103. https://doi.org/10.1103/PhysRevB.70.014103

    Article  CAS  Google Scholar 

  15. Bdzil JB, Stewart DS (2007) The dynamics of detonation in explosive systems. Annu Rev Fluid Mech 39:263–292. https://doi.org/10.1146/annurev.fluid.38.050304.092049

    Article  Google Scholar 

  16. Yang K, Lee J, Sottos NR, Moore JS (2015) Shock-induced ordering in a nano-segregated network-forming ionic liquid. J Am Chem Soc 137:16000–16003

    Article  CAS  Google Scholar 

  17. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  18. Senftle TP, Hong S, Islam MM et al (2016) The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater 2:15011. https://doi.org/10.1038/npjcompumats.2015.11

    Article  CAS  Google Scholar 

  19. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991

    Article  CAS  Google Scholar 

  20. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320. https://doi.org/10.1021/ja00275a013

    Article  CAS  Google Scholar 

  21. Strachan A, Holian BL (2005) Energy exchange between mesoparticles and their internal degrees of freedom. Phys Rev Lett 94:014301

    Article  Google Scholar 

  22. Lynch K, Thompson A, Strachan A (2008) Coarse grain modeling of spall failure in molecular crystals: role of intra-molecular degrees of freedom. Model Simul Mater Sci Eng 17:015007

    Article  Google Scholar 

  23. Lin K-H, Holian BL, Germann TC, Strachan A (2014) Mesodynamics with implicit degrees of freedom. J Chem Phys 141:064107. https://doi.org/10.1063/1.4891308

    Article  CAS  PubMed  Google Scholar 

  24. Onofrio N, Guzman D, Strachan A (2015) Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat Mater 14:440–446. https://doi.org/10.1038/nmat4221

    Article  CAS  PubMed  Google Scholar 

  25. Onofrio N, Strachan A (2015) Voltage equilibration for reactive atomistic simulations of electrochemical processes. J Chem Phys 143:054109. https://doi.org/10.1063/1.4927562

    Article  CAS  PubMed  Google Scholar 

  26. Antillon E, Banlusan K, Strachan A (2014) Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions. Model Simul Mater Sci Eng 22:025027

    Article  Google Scholar 

  27. Antillon E, Strachan A (2015) Mesoscale simulations of shockwave energy dissipation via chemical reactions. J Chem Phys 142:084108

    Article  Google Scholar 

  28. Millot M, Dubrovinskaia N a, Černok A, et al (2015) Shock compression of stishovite and melting of silica at planetary interior conditions. Sci 347:418–420

    Google Scholar 

  29. Erhart P, Bringa EM, Kumar M, Albe K (2005) Atomistic mechanism of shock-induced void collapse in nanoporous metals. Phys Rev B 72:052104

    Article  Google Scholar 

  30. Wood MA, Cherukara MJ, Kober EM, Strachan A (2015) Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J Phys Chem C 119:22008–22015. https://doi.org/10.1021/acs.jpcc.5b05362

    Article  CAS  Google Scholar 

  31. Knudson MD, Desjarlais MP, Dolan DH (2008) Shock-wave exploration of the high-pressure phases of carbon. Sci 322:1822–1825

    Article  CAS  Google Scholar 

  32. Dreger ZA, Gruzdkov YA, Gupta YM, Dick JJ (2002) Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: time-resolved emission spectroscopy. J Phys Chem B 106:247–256

    Article  CAS  Google Scholar 

  33. McGrane SD, Moore DS, Funk DJ (2004) Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films. J Phys Chem A 108:9342–9347. https://doi.org/10.1021/jp048464x

    Article  CAS  Google Scholar 

  34. Dlott DD (2011) New developments in the physical chemistry of shock compression. Annu Rev Phys Chem 62:575–597. https://doi.org/10.1146/annurev.physchem.012809.103514

    Article  CAS  PubMed  Google Scholar 

  35. Dlott DD (1990) Theory of ultrahot molecular solids: vibrational cooling and shock-induced multiphonon up pumping in crystalline naphthalene. J Chem Phys 93:1695–1709. https://doi.org/10.1063/1.459097

    Article  Google Scholar 

  36. Dlott DD (1990) Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry. J Chem Phys 92:3798–3812. https://doi.org/10.1063/1.457838

    Article  CAS  Google Scholar 

  37. Bassette WP, Dlott DD (2016) High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). J Appl Phys 119:225103. https://doi.org/10.1063/1.4953353

    Article  CAS  Google Scholar 

  38. Shan T-R, Thompson AP (2014) Micron-scale reactive atomistic simulations of void collapse and hotspot growth in pentaerythritol tetranitrate. In: 15th Int. Detonation Symp. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), Albuquerque, NM (United States), p SAND2015–1243C

    Google Scholar 

  39. Brenner DW, Robertson DH, Elert ML, White CT (1993) Detonations at nanometer resolution using molecular dynamics. Phys Rev Lett 70:2174

    Article  CAS  Google Scholar 

  40. Hu Y, Brenner DW, Shi Y (2011) Detonation initiation from spontaneous hotspots formed during cook-off observed in molecular dynamics simulations. J Phys Chem C 115:2416–2422

    Article  CAS  Google Scholar 

  41. Marsh SP (1980) LASL shock hugoniot data. University of California Press

    Google Scholar 

  42. Cherukara MJ, Germann TC, Kober EM, Strachan A (2014) Shock loading of granular Ni/Al composites. Part 1: mechanics of loading. J Phys Chem C 118:26377–26386

    Article  CAS  Google Scholar 

  43. Cherukara MJ, Germann TC, Kober EM, Strachan A (2016) Shock loading of granular Ni/Al composites. Part 2: shock-induced chemistry. J Phys Chem C 120:6804–6813

    Article  CAS  Google Scholar 

  44. Holian BL, Germann TC, Maillet J-B, White CT (2002) Atomistic mechanism for hot spot initiation. Phys Rev Lett 89:285501

    Article  Google Scholar 

  45. Herring SD, Germann TC, Grønbech-Jensen N (2010) Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive. Phys Rev B 82:214108

    Article  Google Scholar 

  46. Campbell AW, Davis WC, Travis JR (1961) Phys Fluids 4(4):498

    Google Scholar 

  47. Bowden FP, Yoffe AD (1952) Initiation and growth of explosion in liquids and solids. CUP Archive

    Google Scholar 

  48. Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25:489–496

    Article  CAS  Google Scholar 

  49. Islam MM, Strachan A (2017) Decomposition and reaction of polyvinyl nitrate under shock and thermal loading: a ReaxFF reactive molecular dynamics study. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.7b06154

  50. Wood MA, van Duin AC, Strachan A (2014) Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX: a reactive molecular dynamics study. J Phys Chem A 118:885–895

    Article  CAS  Google Scholar 

  51. Moore DS, McGrane SD, Funk DJ (2004) Ultrafast spectroscopic investigation of shock compressed energetic polymer films. AIP Conf Proc 706:1285–1288. https://doi.org/10.1063/1.1780473

    Article  CAS  Google Scholar 

  52. Brown KE, McGrane SD, Bolme CA, Moore DS (2014) Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy. J Phys Chem A 118:2559–2567. https://doi.org/10.1021/jp4125793

    Article  CAS  PubMed  Google Scholar 

  53. Strachan A, Kober EM, van Duin AC et al (2005) Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 122:054502

    Article  Google Scholar 

  54. Shan T-R, Thompson AP (2014) Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void. In: J Phys Conf Ser, IOP Publishing, p 172009

    Google Scholar 

  55. An Q, Zybin SV, Goddard WA III et al (2011) Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Phys Rev B 84:220101

    Article  Google Scholar 

  56. Kulkarni SG, Gao X-L, Horner SE et al (2013) Ballistic helmets—their design, materials, and performance against traumatic brain injury. Compos Struct 101:313–331

    Article  Google Scholar 

  57. Morinière FD, Alderliesten RC, Benedictus R (2014) Modelling of impact damage and dynamics in fibre-metal laminates—a review. Int J Impact Eng 67:27–38

    Article  Google Scholar 

  58. Sadighi M, Alderliesten RC, Benedictus R (2012) Impact resistance of fiber-metal laminates: a review. Int J Impact Eng 49:77–90

    Article  Google Scholar 

  59. López-Puente J, Arias A, Zaera R, Navarro C (2005) The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: an experimental and numerical study. Int J Impact Eng 32:321–336

    Article  Google Scholar 

  60. Crupi V, Epasto G, Guglielmino E (2012) Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading. Int J Impact Eng 43:6–15

    Article  Google Scholar 

  61. Grujicic M, Pandurangan B, Bell WC et al (2011) Molecular-level simulations of shock generation and propagation in polyurea. Mater Sci Eng A 528:3799–3808

    Article  Google Scholar 

  62. Banlusan K, Strachan A (2016) Shockwave energy dissipation in metal-organic framework MOF-5. J Phys Chem C 120:12463–12471. https://doi.org/10.1021/acs.jpcc.6b02283

    Article  CAS  Google Scholar 

  63. Banlusan K, Antillon E, Strachan A (2015) Mechanisms of plastic deformation of metal-organic framework-5. J Phys Chem C 119:25845–25852

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Strachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, M.M., Cherukara, M., Antillon, E., Strachan, A. (2019). Shock-Induced Chemistry: Molecular Dynamics and Coarse Grain Modeling. In: Goldman, N. (eds) Computational Approaches for Chemistry Under Extreme Conditions. Challenges and Advances in Computational Chemistry and Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-05600-1_8

Download citation

Publish with us

Policies and ethics