Skip to main content
Log in

Sulfur-induced porous carbon nanofibers composite SiO as bifunctional anode for high-performance Li-ion storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-conductivity and volume expansion are the main factors hindering the development of SiO anode materials. To solve these problems, in this work, a bifunctional anode was prepared with sulfur-induced SiO embedded carbon nanofibers (SiO–S–CNFs) by the electrospinning method and followed by annealing. Benefitting from the good conductance of CNFs, SiO–S–CNFs showed fast kinetics during charging and discharging. The introduction of sulfur powder during annealing formed a porous CNFs skeleton, further increasing the specific surface area of CNFs and effectively inhibiting the volume expansion of SiO. The large specific surface area also increased the contact between the electrode and the electrolyte and exposed more reaction sites of SiO. Results show that the reversible capacity of the cell was 376 mAh g−1 after 500 cycles at 1 A g−1. The SiO–S–CNFs electrode exhibited a high reversible capacity of 598 and 204 mAh g−1 at current densities from 0.1 to 2 A g−1, respectively. This work offers a feasible and simple method to ameliorate the electrochemical stability of silicon-based composite LIBs electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wu D, Wang C, Wu H, Wang S, Wang F, Chen Z, Zhao T, Zhang Z, Zhang LY, Li CM (2020) Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon 163:137–144

    CAS  Google Scholar 

  2. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    CAS  Google Scholar 

  3. Wu W, Kang Y, Wang M, Xu D, Wang J, Cao Y, Wang C, Deng Y (2020) An ultrahigh-areal-capacity SiOx negative electrode for lithium ion batteries. J Power Sour 464:228244

    CAS  Google Scholar 

  4. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y (2021) Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J 425:130657

    CAS  Google Scholar 

  5. Hou B-H, Wang Y-Y, Liu D-S, Gu Z-Y, Feng X, Fan H, Zhang T, Lü C, Wu X-L (2018) N-Doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in n-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater 28(47):1805444

    Google Scholar 

  6. Liu X, Wang M, Qin B, Zhang Y, Liu Z, Fan H (2022) 2D–2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem Eng J 431:133796

    CAS  Google Scholar 

  7. Yang X, Wang Y-Y, Hou B-H, Liang H-J, Zhao X-X, Fan H, Wang G, Wu X-L (2020) Nano-SnO2 decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries. Acta Metall Sinica (English Lett) 34(3):390–400

    Google Scholar 

  8. Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee ST (1999) Si nanowires grown from silicon oxide. Chem Phys Lett 299(2):237–242

    CAS  Google Scholar 

  9. Wang J, Zhao H, He J, Wang C, Wang J (2011) Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources 196(10):4811–4815

    CAS  Google Scholar 

  10. Ji J, Ji H, Zhang LL, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater 25(33):4673–4677

    CAS  Google Scholar 

  11. Nguyen CC, Yoon T, Seo DM, Guduru P, Lucht BL (2016) Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces 8(19):12211–12220

    CAS  Google Scholar 

  12. Wu W, Liang Y, Ma H, Peng Y, Yang H (2016) Insights into the conversion behavior of SiO-C hybrid with pre-treated graphite as anodes for Li-ion batteries. Electrochim Acta 187:473–479

    CAS  Google Scholar 

  13. Zhou X-Y, Tang J-J, Yang J, Xie J, Ma L-L (2013) Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668

    CAS  Google Scholar 

  14. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11(7):626–632

    CAS  Google Scholar 

  15. Sun L, Su T, Xu L, Liu M, Du HB (2016) Two-dimensional ultra-thin SiO(x) (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes. Chem Commun (Camb) 52(23):4341–4344

    CAS  Google Scholar 

  16. Lee Y-S, Ju SH, Kim J-H, Hwang SS, Choi J-M, Sun Y-K, Kim H, Scrosati B, Kim D-W (2012) Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochem Commun 17:18–21

    CAS  Google Scholar 

  17. Fan CY, Xie D, Zhang XH, Diao WY, Jiang R, Wu XL (2021) Homogeneous Li+ flux distribution enables highly stable and temperature-tolerant lithium anode. Adv Func Mater 31(32):2102158

    CAS  Google Scholar 

  18. Yi Y, Ma H, Lian X, Mei Q, Zeng Z, Zhao Y, Lu C, Zhao W, Guo W, Liu Z, Sun J (2021) Harmonized edge/graphitic-nitrogen doped carbon nanopolyhedron@nanosheet composite via salt-confined strategy for advanced K-ion hybrid capacitors. InfoMat 3(8):891–903

    CAS  Google Scholar 

  19. Yang M, Ning Q, Fan C, Wu X (2021) Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin Chem Lett 32(2):895–899

    CAS  Google Scholar 

  20. Liu D-S, Liu D-H, Hou B-H, Wang Y-Y, Guo J-Z, Ning Q-L, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300

    CAS  Google Scholar 

  21. Jin H-C, Sun Q, Wang J-T, Ma C, Ling L-C, Qiao W-M (2021) Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure. New Carbon Mater 36(2):390–398

    Google Scholar 

  22. Cheng ZY, Bharti V, Xu TB, Xu HS, Mai T, Zhang QM (2001) Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers. Sensors Actuators a-Phys 90(1–2):138–147

    CAS  Google Scholar 

  23. Zhang K, Du W, Qian Z, Lin L, Gu X, Yang J, Qian Y (2021) SiOx embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 178:202–210

    CAS  Google Scholar 

  24. Wang Z, Yang N, Ren L, Wang X, Zhang X (2020) Core-shell structured SiO@C with controllable mesopores as anode materials for lithium-ion batteries. Microporous Mesoporous Mater 307:110480

    CAS  Google Scholar 

  25. Liu Q, Hu X, Liu Y, Wen Z (2020) One-step low-temperature molten salt synthesis of two-dimensional Si@SiOx@C hybrids for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 12(50):55844–55855

    CAS  Google Scholar 

  26. Cheng IF, Xie Y, Allen Gonzales R, Brejna PR, Sundararajan JP, Fouetio Kengne BA, Eric Aston D, McIlroy DN, Foutch JD, Griffiths PR (2011) Synthesis of graphene paper from pyrolyzed asphalt. Carbon 49(8):2852–2861

    CAS  Google Scholar 

  27. Zhong M, Kim EK, McGann JP, Chun SE, Whitacre JF, Jaroniec M, Matyjaszewski K, Kowalewski T (2012) Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J Am Chem Soc 134(36):14846–14857

    CAS  Google Scholar 

  28. Si Q, Hanai K, Ichikawa T, Phillipps MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J Power Sources 196(22):9774–9779

    CAS  Google Scholar 

  29. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341

    CAS  Google Scholar 

  30. Yue L, Zhang L, Zhong H (2014) Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources 247:327–331

    CAS  Google Scholar 

  31. Peng T, Liu C, Hou X, Zhang Z, Wang C, Yan H, Lu Y, Liu X, Luo Y (2017) Control growth of mesoporous nickel tungstate nanofiber and its application as anode material for lithium-ion batteries. Electrochim Acta 224:460–467

    CAS  Google Scholar 

  32. Hirata A, Kohara S, Asada T, Arao M, Yogi C, Imai H, Tan Y, Fujita T, Chen M (2016) Atomic-scale disproportionation in amorphous silicon monoxide. Nature Commun. https://doi.org/10.1038/ncomms11591

    Article  Google Scholar 

  33. Wang B, Ye Y, Xu L, Quan Y, Wei W, Zhu W, Li H, Xia J (2020) Space-confined yolk-shell construction of Fe3O4 nanoparticles inside n-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc-air batteries. Adv Func Mater 30(51):2005834

    CAS  Google Scholar 

  34. Song F, Yang X, Zhang S, Zhang L-L, Wen Z (2018) High-performance phosphorus-modified SiO/C anode material for lithium ion batteries. Ceram Int 44(15):18509–18515

    CAS  Google Scholar 

  35. Zhu Y, Wang C (2011) Novel CV for phase transformation electrodes. J Phys Chem C 115(3):823–832

    CAS  Google Scholar 

  36. Zhao J, Hu Z, Sun D, Jia H, Liu X (2019) MOF-derived FeS/C nanosheets for high performance lithium ion batteries. Nanomaterials (Basel) 9(4):492

    CAS  Google Scholar 

  37. Peng J, Luo J, Li W, Zeng P, Wu Z, Wang Y, Li J, Shu H, Wang X (2021) Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries. J Electroanal Chem 880:114798

    CAS  Google Scholar 

  38. Shi C, Huang H, Xia Y, Yu J, Fang R, Liang C, Zhang J, Gan Y, Zhang W (2019) Importing tin nanoparticles into biomass-derived silicon oxycarbides with high-rate cycling capability based on supercritical fluid technology. Chemistry 25(32):7719–7725

    CAS  Google Scholar 

  39. Lee H-Y, Lee S-M (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6(5):465–469

    CAS  Google Scholar 

  40. Li Y, Ni B, Li X, Wang X, Zhang D, Zhao Q, Li J, Lu T, Mai W, Pan L (2019) High-performance na-ion storage of S-doped porous carbon derived from conjugated microporous polymers. Nano-Micro Lett. https://doi.org/10.1007/s40820-019-0291-z

    Article  Google Scholar 

  41. Zhang J, Zhang W, He T, Amiinu IS, Kou Z, Li J, Mu S (2017) Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 115:95–104

    CAS  Google Scholar 

  42. Hu Z, Liu Z, Zhao J, Yu X, Lu B (2021) Rose-petals-derived hemispherical micropapillae carbon with cuticular folds for super potassium storage. Electrochim Acta 368:137629

    CAS  Google Scholar 

  43. Zhao J, Zhou H, Jin M, Chen P, Chen S, Liu X (2020) ZnO/TiO2/C nanofibers by electrospinning for high-performance lithium storage. J Mater Sci 56(3):2497–2505

    Google Scholar 

  44. Yu J, Huang H, Bian F, Liang C, Xia Y, Zhang J, Gan Y, Zhang W (2018) Supercritical CO2-fluid-assisted synthesis of TiO2 quantum dots/reduced graphene oxide composites for outstanding sodium storage capability. ACS Appl Energy Mater 1(12):7213–7219

    CAS  Google Scholar 

  45. Tian W, Hu H, Wang Y, Li P, Liu J, Liu J, Wang X, Xu X, Li Z, Zhao Q, Ning H, Wu W, Wu M (2018) metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12(2):1990–2000

    CAS  Google Scholar 

  46. Guo Y, Zhang Y, Wang Y, Zhang D, Lu Y, Luo R, Wang Y, Liu X, Kim J-K, Luo Y (2019) Vertically aligned ultrathin MoS2 nanosheets grown on graphene-wrapped hollow carbon microtubes derived from loofah sponge as advanced anodes for highly reversible lithium storage. Electrochim Acta 296:989–998

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Zhao or Jian Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

jin, M., Zhou, H., Sun, G. et al. Sulfur-induced porous carbon nanofibers composite SiO as bifunctional anode for high-performance Li-ion storage. J Mater Sci 57, 5954–5963 (2022). https://doi.org/10.1007/s10853-022-07022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07022-0

Navigation