Skip to main content

Advertisement

Log in

The binder-free mesoporous CoNi2S4 electrode for high-performance symmetric and asymmetric supercapacitor devices

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mixed metal sulphides have attracted the attention of researchers working in the development of electroactive materials for high-energy supercapacitors. Mesoporous CoNi2S4 nanostructures have been grown on Ni-foam via an efficient single-step hydrothermal process. The performance of CoNi2S4 nanostructures was compared with pristine Ni3S4 and Co3S4-CoS nanostructures which has been prepared using the same approach. The CoNi2S4 nanostructures with diverse morphology reveal a high surface area (87.8 m2 g−1), large specific capacity (1117 C g−1) and low charge transfer resistance (0.3 Ω). The admirable features enable shortening of electrolyte ion diffusion pathway and quick electron transport and increase effective electroactive sites facilitating improved energy storage. The CoNi2S4 electrode-based asymmetric supercapacitor yields a large energy density of 87.4 W h kg−1 with a power density of 1250 W kg−1 and retains 80% of capacity at the end of 5000 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79(4):577–583

    CAS  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    CAS  Google Scholar 

  3. Patil SJ, Kim JH, Lee DW (2017) Self-assembled Ni3S2//CoNi2S4 nanoarrays for ultrahigh-performance supercapacitor. Chem Eng J 322:498–509

    CAS  Google Scholar 

  4. Jing C, Guo X, Xia L, Chen Y, Wang X, Liu X, Dong B, Dong F, Li S, Zhang Y (2020) Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chem Eng J 379:122305–122314

    CAS  Google Scholar 

  5. Han D, Wei J, Zhao Y, Shen Y, Pan Y, Wei Y, Mao L (2020) Metal–organic framework derived petal-like Co3O4@CoNi2S4 hybrid on carbon cloth with enhanced performance for supercapacitors. Inorg Chem Front 7(6):1428–1436

    CAS  Google Scholar 

  6. Evariste U, Jiang G, Yu B, Liu Y, Huang Z, Lu Q, Ma P (2019) Hierarchical mesoporous Zn–Ni–Co–S microspheres grown on reduced graphene oxide/nickel foam for asymmetric supercapacitors. J Mater Res 34(14):2445–2455

    CAS  Google Scholar 

  7. Nandhini S, Shobana Devi S, Muralidharan G (2019) Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor. Ionics 25(9):4409–4423

    Google Scholar 

  8. Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49:10178–10180

    CAS  Google Scholar 

  9. Yang J, Ma M, Sun C, Zhang Y, Huang W, Dong X (2015) Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J Mater Chem A 3(3):1258–1264

    CAS  Google Scholar 

  10. Li B, Zheng M, Xue H, Pang H (2016) High performance electrochemical capacitor materials focusing on nickel based materials. Inorg Chem Front 3:175–202

    CAS  Google Scholar 

  11. Heydari H, Moosavifard SE, Elyasi S, Shahraki M (2017) Nanoporous CuS nanohollow spheres as advanced material for high-performance supercapacitors. Appl Surf Sci 394:425–430

    CAS  Google Scholar 

  12. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    CAS  Google Scholar 

  13. Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, El-Kady MF, Kaner RB, Mousavi MF (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem Mater 27:3919–3926

    CAS  Google Scholar 

  14. Muthu NS, Gopalan M (2019) Polyethylene glycol-assisted growth of Ni3S4 closely packed nanosheets on Ni-foam for enhanced supercapacitor device. J Solid State Electrochem 23(10):2937–2950

    Google Scholar 

  15. Nandhini S, Muralidharan G (2021) Co3S4-CoS/rGO hybrid nanostructure: promising material for high-performance and high-rate capacity supercapacitor. J Solid State Electrochem 25:465–477

    CAS  Google Scholar 

  16. Abza T, Dadi DG, Hone FG, Meharu TC, Tekle G, Abebe EB, Ahmed KS (2020) Characterization of cobalt sulfide thin films synthesized from acidic chemical baths. Adv Mater Sci Eng 2020:1–9

    Google Scholar 

  17. Balayeva OO, Azizov AA, Muradov MB, Maharramov AM, Eyvazova GM, Alosmanov RM, Mamiyev ZM, Aghamaliyev ZA (2016) β-NiS and Ni3S4 nanostructures: fabrication and characterization. Mater Res Bull 75:155–161

    CAS  Google Scholar 

  18. Patil AM, Lokhande VC, Lokhande AC, Chodankar NR, Ji T, Kim JH, Lokhande CD (2016) Ultrathin nickel sulfide nano-flames as an electrode for high performance supercapacitor; comparison of symmetric FSS-SCs and electrochemical SCs device. RSC Adv 6(72):68388–68401

    CAS  Google Scholar 

  19. Cholan S, Shanmugam N, Kannadasan N, Sathishkumar K, Deivam K (2014) Effect of poly ethylene glycol (PEG) as surfactant on cerium doped ZnS nanoparticles. J Market Res 3(3):222–227

    CAS  Google Scholar 

  20. Yin PF, Han XY, Zhou C, Xia CH, Hu CL, Sun LL (2015) Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process. Int J Miner Metall Mater 22(7):762–769

    CAS  Google Scholar 

  21. Cao X, He J, Li H, Kang L, He X, Sun J, Jiang R, Xu H, Lei Z, Liu ZH (2018) CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small 14(27):1800998

    Google Scholar 

  22. Gao Z, Chen C, Chang J, Chen L, Wang P, Wu D, Xu F, Guo Y, Jiang K (2018) Enhanced cycleability of faradic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor. Electrochim Acta 281:394–404

    CAS  Google Scholar 

  23. Zhang J, Liu X, Yin Q, Zhao Y, Luo J, Han J (2019) CoNi2S4 nanoplate arrays derived from hydroxide precursors for flexible fiber-shaped supercapacitors. ACS Omega 4(7):11863–11870

    CAS  Google Scholar 

  24. He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for super high energy density asymmetric supercapacitors. Adv Energy Mater 7(21):1700983

    Google Scholar 

  25. Liu B, Mo R, Kong D, Wang Y, Yang HY (2017) 3D nitrogen-doped graphene decorated CoNi2S4@polypyrrole electrode for pseudocapacitor with ultrahigh electrochemical performance. FlatChem 6:1–10

    Google Scholar 

  26. Fahmy A, Al-Zomarawy A, Sayed AZ, El-Arab MAE, Shehata HA, Saeed AM (2015) Silver/polyethylene glycol nanocomposite thin films and its biological applications. J Adv Chem 11(5):3597–3608

    CAS  Google Scholar 

  27. Ren X, Du Y, Song M, Zhou Y, Chen Y, Ma F, Wan J (2019) In-situ transformation of Ni foam into sandwich nanostructured Co1.29Ni1.71O4 nanoparticle@ CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors. Chem Eng J 375:122063

    CAS  Google Scholar 

  28. Mei L, Yang T, Xu C, Zhang M, Chen L, Li Q, Wang T (2014) Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 3:36–45

    CAS  Google Scholar 

  29. Yang L, Lu X, Wang S, Wang J, Guan X, Guan X, Wang G (2020) Designed synthesis of nickel–cobalt-based electrode materials for high-performance solid-state hybrid supercapacitors. Nanoscale 12(3):1921–1938

    CAS  Google Scholar 

  30. Nandhini S, Muralidharan G (2021) Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: a superlative high energy supercapacitor device with excellent cycling performance. Electrochim Acta 365:137367

    CAS  Google Scholar 

  31. Zhao F, Huang W, Zhang H, Zhou D (2017) Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl Surf Sci 426:1206–1212

    CAS  Google Scholar 

  32. Tang Z, Jia C, Wan Z, Zhou Q, Ye X, Zhu Y (2016) Facile preparation of CoNi2S4@NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Adv 6(113):112307–112316

    CAS  Google Scholar 

  33. Tang J, Shen J, Li N, Ye M (2015) One-pot tertbutanol assisted solvothermal synthesis of CoNi2S4/reduced graphene oxide nanocomposite for high-performance supercapacitors. Ceram Int 41(5):6203–6211

    CAS  Google Scholar 

  34. Sui Y, Zhang M, Hu H, Zhang Y, Qi J, Wei F, Meng Q, He Y, Ren Y, Sun Z (2018) ZnO@Ni–Co–S core–shell nanorods-decorated carbon fibers as advanced electrodes for high-performance supercapacitors. NANO 13(12):1850148

    CAS  Google Scholar 

  35. Zhao J, Li Z, Zhang M, Meng A, Li Q (2016) Vertically cross-linked and porous CoNi2S4 nanosheets-decorated SiC nanowires with exceptional capacitive performance as a free-standing electrode for asymmetric supercapacitors. J Power Sources 332:355–365

    CAS  Google Scholar 

  36. Qin W, Li J, Liu X, Zhou N, Wu C, Ding M, Jia C (2019) Formation of needle-like porous CoNi2S4-MnOOH for high performance hybrid supercapacitors with high energy density. J Colloid Interface Sci 554:125–132

    CAS  Google Scholar 

  37. Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5(3):1400977–1400983

    Google Scholar 

  38. Shen J, Xu X, Dong P, Zhang Z, Baines R, Ji J, Pei Y, Ye M (2016) Design and synthesis of three-dimensional needle-like CoNi2S4/CNT/graphene nanocomposite with improved electrochemical properties. Ceram Int 42(7):8120–8127

    CAS  Google Scholar 

  39. Shen J, Wu J, Pei L, Rodrigues MTF, Zhang Z, Zhang F, Zhang X, Ajayan PM, Ye M (2016) CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv Energy Mater 6(13):1600341–1600348

    Google Scholar 

  40. Rajesh JA, Park JH, Quy VHV, Kwon JM, Chae J, Kang SH, Kim H, Ahn KS (2018) Rambutan-like cobalt nickel sulfide (CoNi2S4) hierarchitecture for high-performance symmetric aqueous supercapacitors. J Ind Eng Chem 63:73–83

    CAS  Google Scholar 

  41. Liu XX, Wu R, Wang Y, Xiao SH, He Q, Niu XB, Blackwood DJ, Chen JS (2019) Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochim Acta 311:221–229

    CAS  Google Scholar 

  42. Liu P, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2019) Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application. J Mater Sci: Mater Electron 2019(30):19077–19086

    Google Scholar 

  43. Liu P, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2019) One-step hydrothermal synthesis of CoNi2S4 for hybrid supercapacitor electrodes. NANO 14(07):1950088

    CAS  Google Scholar 

  44. Li Y, Chen J, Ji Y, Yang W, Fu XZ, Sun R, Wong CP (2018) Hierarchical graphite foil/CoNi2S4 flexible electrode with superior thermal conductivity for high-performance supercapacitors. J Energy Chem 27(2):463–471

    Google Scholar 

  45. Liang J, Li M, Chai Y, Luo M, Li L (2017) TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J Power Sources 362:123–130

    CAS  Google Scholar 

  46. He Y, Xiao X, Gao L, Li S, Shen Y (2017) Bouquet-like NiCo2O4@CoNi2S4 arrays for high-performance pseudocapacitors. ChemElectroChem 4(3):607–612

    CAS  Google Scholar 

  47. Su C, Xu S, Zhang L, Chen X, Guan G, Hu N, Su Y, Zhou Z, Wei H, Yang Z, Qin Y (2019) Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors. Electrochim Acta 305:81–89

    CAS  Google Scholar 

  48. Du W, Zhu Z, Wang Y, Liu J, Yang W, Qian X, Pang H (2014) One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Adv 4(14):6998–7002

    CAS  Google Scholar 

  49. Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J Mater Chem A 2(25):9613–9619

    CAS  Google Scholar 

  50. Chen YM, Li Z, Lou XW (2015) General formation of MxCo3−xS4 (M= Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew Chem 127(36):10667–10670

    Google Scholar 

  51. Ding X, Zhu J, Hu G, Zhang S (2019) Core–shell structured CoNi2S4@ polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 25(2):897–901

    CAS  Google Scholar 

  52. Yedluri AK, Kulurumotlakatla DK, Sangaraju S, Ihab MO, Kim HJ (2020) Facile synthesis of novel and highly efficient CoNi2S4-Ni(OH)2 nanosheet arrays as pseudocapacitive-type electrode material for high-performance electrochemical supercapacitors. J Energy Storage 31:101623–101631

    Google Scholar 

  53. Yang Y, Zhang Y, Zhu C, Xie Y, Lv L, Chen W, He Y, Hu Z (2020) Synthesis of ultrafine CoNi2S4 nanowire on carbon cloth as an efficient positive electrode material for high-performance hybrid supercapacitors. J Alloy Compd 823:153885

    CAS  Google Scholar 

  54. Liu Y, Wen Y, Zhang Y, Wu X, Li H, Chen H, Huang J, Liu G, Peng S (2020) Reduced CoNi2S4 nanosheets decorated by sulfur vacancies with enhanced electrochemical performance for asymmetric supercapacitors. Sci China Mater 63(7):1216–1226

    CAS  Google Scholar 

  55. Nandhini S, Muralidharan G (2019) Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl Surf Sci 480:186–198

    Google Scholar 

  56. Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3(23):12452–12460

    CAS  Google Scholar 

  57. Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y (2014) Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A 2(18):6540–6548

    CAS  Google Scholar 

  58. Chen H, Chen S, Shao H, Li C, Fan M, Chen D, Tian G, Shu K (2016) Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem Asian J 11(2):248–255

    CAS  Google Scholar 

  59. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322

    CAS  Google Scholar 

  60. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    CAS  Google Scholar 

  61. Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36

    CAS  Google Scholar 

  62. Han Y, Sun S, Cui W, Deng J (2020) Multidimensional structure of CoNi2S4 materials: structural regulation promoted electrochemical performance in a supercapacitor. RSC Adv 10(13):7541–7550

    CAS  Google Scholar 

  63. Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interf 6(21):19318–19326

    CAS  Google Scholar 

  64. Wang Q, Gao F, Xu B, Cai F, Zhan F, Gao F, Wang Q (2017) ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor. Chem Eng J 327:387–396

    CAS  Google Scholar 

  65. Li Y, Shan Y, Pang H (2020) Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chin Chem Lett 31(9):2280–2286

    CAS  Google Scholar 

  66. Li N, Guo X, Tang X, Xing Y, Pang H (2021) Three-dimensional Co2V2O7· nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.05.012

    Article  Google Scholar 

  67. Zheng S, Li Q, Xue H, Pang H, Xu Q (2020) A highly alkaline-stable metal oxide@ metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7(2):305–314

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, S. Nandhini (RGNF-2015-17-SC-TAM-18395), is grateful to the University Grants Commission, New Delhi, for providing financial support through Rajiv Gandhi National Fellowship (RGNF). The authors thank the Department of Science and Technology, Government of India, for providing X-ray diffraction facilities through FIST (SR/FST/PSI-199/2015(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muralidharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandhini, S., Muralidharan, G. The binder-free mesoporous CoNi2S4 electrode for high-performance symmetric and asymmetric supercapacitor devices. J Mater Sci 57, 5933–5953 (2022). https://doi.org/10.1007/s10853-022-06987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06987-2

Navigation