Skip to main content
Log in

Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hexagonal and bundle like spinel nickel cobaltite nanostructures has been successfully prepared using two different precipitants such as oxalic acid and potassium hydroxide by facile one-step route followed by calcinated at 400 °C in air, and their structural, optical and electrochemical properties are proposed in this work. The optical band gap of these materials was estimated around 3.88 and 4.07 eV. Room temperature photoluminescence measurements reveal near band emission enhancement in both NiCo2O4 nanostructures. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical tests reveal high specific capacitance 996 Fg−1 when oxalic acid was used as precipitant, which was nearly 2.1 times higher than that of KOH (precipitant). The enhanced electrochemical performance is due to the porous nature of nanostructures, which provides fast diffusion pathway to electronic and ionic transport on the NiCo2O4/GCE electrode and electrolyte interfaces. This research work confirms the as-prepared spinel NiCo2O4 which can serve as advanced electrode material for next generation supercapacitor device. Moreover, the magnetic measurement of these samples exhibits weak ferromagnetic behavior at room temperature with remanent magnetization Mr = 0.0005, and 0.0028 emu/g observed at coercivity field Hc = 12 kOe, which may be applicable in the field of magnetic storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  3. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–62 (2010)

    Article  Google Scholar 

  4. G. Yua, X. Xieb, L. Pand, Z. Baod, Y. Cu, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2012)

    Article  Google Scholar 

  5. X.Q. Tian, C.M. Cheng, L. Qian, B. Zheng, H. Yuan, S. Xie, D. Xiao, M.M. Choi, Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J. Mater. Chem. 22, 8029–8035 (2012)

    Article  Google Scholar 

  6. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  Google Scholar 

  7. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publisher, New York, 1999)

    Book  Google Scholar 

  8. H. Jiang, J. Ma, C.Z. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrode. Adv. Mater. 24, 4197–4202 (2012)

    Article  Google Scholar 

  9. M.F. Shao, F.Y. Ning, Y.F. Zhao, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem. Mater. 24, 1192–1197 (2012)

    Article  Google Scholar 

  10. M. Sathiya, A.S. Prakash, K. Ramesh, J.M. Tarascon, A.K. Shukla, V2O5-Anchored carbon nanotubes for enhanced electrochemical energy stoage. J. Am. Chem. Soc. 133, 16291–16299 (2011)

    Article  Google Scholar 

  11. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  Google Scholar 

  12. J.P. Zheng, T.R. Jow, A new charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc. 142, L6–L8 (1995)

    Article  Google Scholar 

  13. J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995)

    Article  Google Scholar 

  14. H. Pang, F. Gao, Q. Chen, R. Liua, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans. 41, 5862–5868 (2012)

    Article  Google Scholar 

  15. M. Lu, Y. Lu, Y. Qiu, J. Cheng, H. Yan, Y. Luo, One-pot synthesized ultrathin MnO2 nanorods as advanced electrodes for high-performance supercapacitors. Mater. Lett. 166, 255–258 (2016)

    Article  Google Scholar 

  16. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013)

    Article  Google Scholar 

  17. X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, H. Zheng, Ordered mesoporous MoO2 as a high- performance anode material for aqueous supercapacitors. J. Power Sources 237, 80–83 (2013)

    Article  Google Scholar 

  18. J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C.L. Shao, Y. Liu, Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3, 5034–5040 (2011)

    Article  Google Scholar 

  19. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, Z.L. Wang, Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered Systems. NANO 7, 2617–2626 (2013)

    Google Scholar 

  20. B. Saravanakumar, K. Kamatchi, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 nanoporous network for high-performance supercapacitors. Appl. Mater. Interfaces 4, 4484–4490 (2012)

    Article  Google Scholar 

  21. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 112, 1825–1830 (2008)

    Article  Google Scholar 

  22. D. Guo, P. Zhang, H.M. Zhang, X.Z. Yu, J. Zhu, Q.H. Li, T.H. Wang, NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 1, 9024–9027 (2013)

    Article  Google Scholar 

  23. G.Y. Zhao, C.L. Xu, H.L. Li, Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. J. Power Sources 163, 1132–1136 (2007)

    Article  Google Scholar 

  24. S.H. Kim, Y.I. Kim, J.H. Park, J.M. Ko, Cobalt-manganese oxide/carbon-nanofiber composite electrodes for supercapacitors. Int. J. Electrochem. Sci. 4, 1489–1496 (2009)

    Google Scholar 

  25. J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Co3O4 Nanowire @MnO2 ultrathin nanosheet core-shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23, 2076–2081 (2011)

    Article  Google Scholar 

  26. J.K. Chang, M.T. Lee, C.H. Huang, W.T. Tsai, Physicochemical properties and electrochemical behavior of binary manganese–cobalt oxide electrodes for supercapacitor applications. Mater. Chem. Phys. 108, 124–131 (2008)

    Article  Google Scholar 

  27. X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. J. Power Sources 238, 150–156 (2013)

    Article  Google Scholar 

  28. J.W. Xiao, S.H. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) Carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 1, 588–595 (2011)

    Article  Google Scholar 

  29. J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen, T. Wang, Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. Appl. Mater. Interfaces 5, 7405–7409 (2013)

    Article  Google Scholar 

  30. A.N. Naveen, S. Selladurai, Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim. Acta 173, 290–301 (2015)

    Article  Google Scholar 

  31. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, Y.Y. Yang, Design and synthesis of NiCo2O4 reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 21, 10504–10511 (2011)

    Article  Google Scholar 

  32. H. Jiang, J. Ma, C.Z. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem. Commun. 48, 4465–4467 (2012)

    Article  Google Scholar 

  33. E. Umeshbabu, G. Rajeshkhanna, G. Ranga Rao, Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrog. Energy 39, 15627–15638 (2014)

    Article  Google Scholar 

  34. H. Wang, Q. Gao, L. Jiang, Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7, 2454–2459 (2011)

    Google Scholar 

  35. M.R. Tarasevich, B.N. Efremov, in Electrodes of Conductive Metallic Oxides Part A, ed. by S. Trasatti (Elsevier, New York, 1982)

    Google Scholar 

  36. J. Liu, C.P. Liu, Y.L. Wan, W. Liu, Z.S. Ma, S.M. Ji, J.B. Wang, Y. Zhou, C.P. Hodgson, Y.C. Li, Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. Cryst. Eng. Commun. 15, 1578–1585 (2013)

    Article  Google Scholar 

  37. R.J. Zou, K.B. Xu, T. Wang, G.J. He, Q. Liu, X.J. Liu, Z.Y. Zhang, J.Q. Hu, Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1, 8560–8566 (2013)

    Article  Google Scholar 

  38. J. Pu, J. Wang, X.Q. Jin, F. Cui, E.H. Sheng, Z.H. Wang, Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochim. Acta 106, 226–234 (2013)

    Article  Google Scholar 

  39. G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453–9456 (2012)

    Article  Google Scholar 

  40. Y. Hou, Y.W. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10, 2727–2733 (2010)

    Article  Google Scholar 

  41. L. Ren, P.P. Wang, Y.S. Han, C.W. Hu, B.Q. Wei, Synthesis of CoC2O42H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 476, 78–83 (2009)

    Article  Google Scholar 

  42. L.G. Sun, H. Li, L. Ren, C.W. Hu, Synthesis of Co3O4 nanostructures using a solvothermal approach. Solid State Sci. 11, 108–112 (2009)

    Article  Google Scholar 

  43. H.B. Liu, L. Xiang, Y. Jin, Hydrothermal modification and characterization of Ni (OH)2 with high discharge capability. Cryst. Growth Des. 6, 283–286 (2006)

    Article  Google Scholar 

  44. D. Yan, H. Zhang, L. Chen, G. Zhu, S. Li, H. Xu, A. Yu, Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. Appl. Mater. Interfaces 6, 15632–15637 (2014)

    Article  Google Scholar 

  45. M. Srivastava, M.E. Uddin, J. Singh, N.H. Kim, J.H. Lee, Preparation and characterization of self-assembled layer by layer NiCo2O4 reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd. 590, 266–276 (2014)

    Article  Google Scholar 

  46. Z.Q. Liu, K. Xiao, Q.Z. Xu, N. Li, Y.Z. Su, H.J. Wanga, S. Chen, Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013)

    Article  Google Scholar 

  47. R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, J. Hu, Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1, 8560 (2013)

    Article  Google Scholar 

  48. C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, X. Zhang, Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J. Mater. Chem. 22, 16084 (2012)

    Article  Google Scholar 

  49. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New Jersey, 1971)

    Google Scholar 

  50. T. Rattanaa, S. Suwanboon, P. Amornpitoksuk, A. Haidou, P. Limsuwan, Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution. J. Alloys Compd. 480, 603–607 (2009)

    Article  Google Scholar 

  51. S.S. Shindea, G.S. Gunda, D.P. Dubalb, S.B. Jamburea, S.B. Lokhande, Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 119, 1–10 (2014)

    Article  Google Scholar 

  52. C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012)

    Article  Google Scholar 

  53. Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high- performance supercapacitor. Appl. Mater. Interfaces 6, 1773–1780 (2014)

    Article  Google Scholar 

  54. X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, Hierarchical NiCo2O4@NiCo2O4 Core/shell nanoflake arrays as high-performance supercapacitor materials. Appl. Mater. Interfaces 5, 8790 (2013)

    Article  Google Scholar 

  55. M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. Appl. Mater. Interfaces 4, 4631–4636 (2012)

    Article  Google Scholar 

  56. R.R. Salunkhe, K. Jang, S.W. Lee, H. Ahn, Aligned nickel–cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv. 2, 3190–3193 (2012)

    Article  Google Scholar 

  57. Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011)

    Article  Google Scholar 

  58. L. Gong, X. Liu, L. Su, L. Wang, Synthesis and electrochemical capacitive behaviors of Co3O4 nanostructures from a novel biotemplating technique. J. Solid State Electrochem. 16, 297–304 (2012)

    Article  Google Scholar 

  59. K. Wang, L. Zhang, Y. Jin, Y. Fan, The preparation of nickel oxide based on infinite dilute method and its electrochemical performance. Russ. J. Electrochem. 50, 176–179 (2014)

    Article  Google Scholar 

  60. F. Deng, L. Yu, M. Sun, T. Lin, G. Cheng, B. Lan, F. Ye, Controllable Growth of Hierarchical NiCo2O4 nanowires and panosheets on carbon fiber paper and their morphology dependent pseudocapacitive performances. Electrochim. Acta 133, 82–390 (2014)

    Article  Google Scholar 

  61. C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, X. Zhang, Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J. Mater. Chem. 22, 16084–16090 (2012)

    Article  Google Scholar 

  62. J. Pu, X.Q. Jin, J. Wang, F.L. Cui, S.B. Chu, E.H. Sheng, Z.H. Wang, Shape-controlled synthesis of ternary nickel cobaltite and their application in supercapacitors. Electroanal. J. Chem. 707, 66–73 (2013)

    Article  Google Scholar 

  63. Z.Q. Niu, P.S. Luan, Q. Shao, H.B. Dong, J.Z. Li, J. Chen, D. Zhao, L. Cai, W.Y. Zhou, X.D. Chen, S.S. Xie, A “skeleton/skin” strategy for preparing ultrathin free- standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5, 8726 (2012)

    Article  Google Scholar 

  64. X. Batlle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35, R15–R42 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silambarasan, M., Ramesh, P.S. & Geetha, D. Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures. J Mater Sci: Mater Electron 28, 323–336 (2017). https://doi.org/10.1007/s10854-016-5527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5527-9

Keywords

Navigation