Skip to main content

Advertisement

Log in

Effect of calcination temperature on electrochemical performance of niobium oxides/carbon composites

  • Advanced Nanomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Orthorhombic niobium pentoxide (T-Nb2O5) possesses an intercalation pseudocapacitive behavior, which is a promising candidate of high-rate anodes for Li-ion capacitors. However, its low electric conductivity hinders the realization of this property. In our study, niobium oxides/carbon composites were prepared by calcinating a niobium peroxo-PAA complex (NbPAA) precursor to improve the electric conductivity. It has been found that the calcination temperature played an important role on the chemical compositions of obtained composites. A reduction phenomenon of niobium oxides by carbon was observed at high temperatures. At the medium temperature of 900 °C, the sample was composed of T-Nb2O5, monoclinic Nb2O5 (M-Nb2O5), amorphous carbon and niobium dioxide (NbO2). Due to the high conductivity of carbon, semi-conductivity of NbO2, and high specific capacity of M-Nb2O5, this sample exhibits a good specific capacity of 142 mAh g−1 (0.25 C) and a high-rate capability (capacity retention of 33.1%, 0.25 C to 25 C). It could be used as one of high-rate anodes for Li-ion capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059. https://doi.org/10.1039/C6CS00875E

    Article  CAS  Google Scholar 

  2. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539. https://doi.org/10.1002/advs.201600539

    Article  CAS  Google Scholar 

  3. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790. https://doi.org/10.1039/C4CS00266K

    Article  CAS  Google Scholar 

  4. Li C, Zhang X, Sun C, Wang K, Sun X, Ma Y (2019) Recent progress of graphene-based materials in lithium-ion capacitors. J Phys D Appl Phys 52(14):143001. https://doi.org/10.1088/1361-6463/aaff3a

    Article  CAS  Google Scholar 

  5. Choi HS, Park CR (2014) Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J Power Sources 259:1–14. https://doi.org/10.1016/j.jpowsour.2014.02.001

    Article  CAS  Google Scholar 

  6. Deng B, Lei T, Zhu W, Xiao L, Liu J (2018) In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv Funct Mater 28(1):1704330. https://doi.org/10.1002/adfm.201704330

    Article  CAS  Google Scholar 

  7. Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D (2015) Free-Standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9(11):11200–11208. https://doi.org/10.1021/acsnano.5b04737

    Article  CAS  Google Scholar 

  8. Naoi K, Naoi W, Aoyagi S, Miyamoto J-i, Kamino T (2013) New generation “nanohybrid supercapacitor.” Acc Chem Res 46(5):1075–1083. https://doi.org/10.1021/ar200308h

    Article  CAS  Google Scholar 

  9. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

  10. Ma G, Li K, Li Y, Gao B, Ding T, Zhong Q, Su J, Gong L, Chen J, Yuan L, Hu B, Zhou J, Huo K (2016) High-performance hybrid supercapacitor based on graphene-wrapped mesoporous T-Nb2O5 nanospheres anode and mesoporous carbon-coated graphene cathode. ChemElectroChem 3(9):1360–1368. https://doi.org/10.1002/celc.201600181

    Article  CAS  Google Scholar 

  11. Lim E, Jo C, Kim H, Kim M-H, Mun Y, Chun J, Ye Y, Hwang J, Ha K-S, Roh KC, Kang K, Yoon S, Lee J (2015) Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9(7):7497–7505. https://doi.org/10.1021/acsnano.5b02601

    Article  CAS  Google Scholar 

  12. Yan L, Rui X, Chen G, Xu W, Zou G, Luo H (2016) Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8(16):8443–8465. https://doi.org/10.1039/C6NR01340F

    Article  CAS  Google Scholar 

  13. Kim JW, Augustyn V, Dunn B (2012) The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv Energy Mater 2(1):141–148. https://doi.org/10.1002/aenm.201100494

    Article  CAS  Google Scholar 

  14. Lim E, Kim H, Jo C, Chun J, Ku K, Kim S, Lee HI, Nam I-S, Yoon S, Kang K, Lee J (2014) Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8(9):8968–8978. https://doi.org/10.1021/nn501972w

    Article  CAS  Google Scholar 

  15. Yu H, Xu L, Wang H, Jiang H, Li C (2019) Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochim Acta 295:829–834. https://doi.org/10.1016/j.electacta.2018.11.017

    Article  CAS  Google Scholar 

  16. Narendar Y, Messing GL (1997) Synthesis, decomposition and crystallization characteristics of peroxo−citrato−niobium: an aqueous niobium precursor. Chem Mater 9(2):580–587. https://doi.org/10.1021/cm960407w

    Article  CAS  Google Scholar 

  17. Yerlikaya C, Ullah N, Kamali AR, Vasant Kumar R (2016) Size-controllable synthesis of lithium niobate nanocrystals using modified Pechini polymeric precursor method. J Therm Anal Calorim 125(1):17–22. https://doi.org/10.1007/s10973-016-5336-7

    Article  CAS  Google Scholar 

  18. Kim JW, Augustyn V, Dunn B (2012) A road to environmentally friendly materials chemistry: low-temperature synthesis of nanosized K0.5Na0.5NbO3 powders through peroxide intermediates in water. Adv Energy Mater 2(1):141–148. https://doi.org/10.1002/aenm.201100494

    Article  CAS  Google Scholar 

  19. Raba AM, Bautista-Ruíz J, Joya MR (2016) Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Mater Res 19(6):1381–1387. https://doi.org/10.1590/1980-5373-mr-2015-0733

    Article  CAS  Google Scholar 

  20. Sunde TOL, Grande T, Einarsrud M-A (2016) Modified Pechini synthesis of oxide powders and thin films. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer International Publishing, Cham, pp 1–30. https://doi.org/10.1007/978-3-319-19454-7_130-1

    Chapter  Google Scholar 

  21. Lanfredi S, Folgueras-Domínguez S, Rodrigues ACM (1995) Preparation of LiNbO3 powder from the thermal decomposition of a precursor salt obtained by an evaporative method. J Mater Chem 5(11):1957–1961. https://doi.org/10.1039/JM9950501957

    Article  CAS  Google Scholar 

  22. Cao J, Xiao G, Xu X, Shen D, Jin B (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol 106:41–47. https://doi.org/10.1016/j.fuproc.2012.06.016

    Article  CAS  Google Scholar 

  23. Ding H, Song Z, Zhang H, Zhang H, Li X (2020) Niobium-based oxide anodes toward fast and safe energy storage: a review. Mater Today Nano 11:100082. https://doi.org/10.1016/j.mtnano.2020.100082

    Article  Google Scholar 

  24. Liao J, Tan R, Kuang Z, Cui C, Wei Z, Deng X, Yan Z, Feng Y, Li F, Wang C, Ma J (2018) Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chin Chem Lett 29(12):1785–1790. https://doi.org/10.1016/j.cclet.2018.11.018

    Article  CAS  Google Scholar 

  25. Park H, Lee D, Song T (2019) High capacity monoclinic Nb2O5 and semiconducting NbO2 composite as high-power anode material for Li-Ion batteries. J Power Sources 414:377–382. https://doi.org/10.1016/j.jpowsour.2019.01.015

    Article  CAS  Google Scholar 

  26. Ramakrishnan S, Balamurugan J, Vinothkannan M, Kim AR, Sengodan S, Yoo DJ (2020) Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Appl Catal B Environ 279:119381. https://doi.org/10.1016/j.apcatb.2020.119381

    Article  CAS  Google Scholar 

  27. Ramakrishnan S, Velusamy DB, Sengodan S, Nagaraju G, Kim DH, Kim AR, Yoo DJ (2022) Rational design of multifunctional electrocatalyst: An approach towards efficient overall water splitting and rechargeable flexible solid-state zinc–air battery. Appl Catal B Environ 300:120752. https://doi.org/10.1016/j.apcatb.2021.120752

    Article  CAS  Google Scholar 

  28. Ramakrishnan S, Karuppannan M, Vinothkannan M, Ramachandran K, Kwon OJ, Yoo DJ (2019) Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Appl Mater Interfaces 11(13):12504–12515. https://doi.org/10.1021/acsami.9b00192

    Article  CAS  Google Scholar 

  29. Shim H, Lim E, Fleischmann S, Quade A, Tolosa A, Presser V (2019) Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustain Energy Fuels 3(7):1776–1789. https://doi.org/10.1039/C9SE00166B

    Article  CAS  Google Scholar 

  30. Hu Z, He Q, Liu Z, Liu X, Qin M, Wen B, Shi W, Zhao Y, Li Q, Mai L (2020) Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Sci Bull 65(14):1154–1162. https://doi.org/10.1016/j.scib.2020.04.011

    Article  CAS  Google Scholar 

  31. Asfaw HD, Tai C-W, Nyholm L, Edström K (2017) Over-stoichiometric NbO2 nanoparticles for a high energy and power density lithium microbattery. ChemNanoMat 3(9):646–655. https://doi.org/10.1002/cnma.201700141

    Article  CAS  Google Scholar 

  32. Hou T, Tang G, Sun X, Cai S, Zheng C, Hu W (2017) Perchlorate ion doped polypyrrole coated ZnS sphere composites as a sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance. RSC Adv 7(69):43636–43641. https://doi.org/10.1039/c7ra07901j

    Article  CAS  Google Scholar 

  33. Boota M, Chen C, Van Aken KL, Jiang J, Gogotsi Y (2019) Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy 65:104022. https://doi.org/10.1016/j.nanoen.2019.104022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education, Youth, and Sports, Czech Republic INTER-EXCELLENCE program under the grant agreement No. LTT20005. It is also supported by the project RP/CPS/2020/005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Fei.

Ethics declarations

Conflict of interest

The authors declare no competing or conflicts of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, H., Kazantseva, N., Pechancova, V. et al. Effect of calcination temperature on electrochemical performance of niobium oxides/carbon composites. J Mater Sci 57, 8504–8515 (2022). https://doi.org/10.1007/s10853-022-06931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06931-4

Navigation