Skip to main content
Log in

Conductive 3D structure nanofibrous scaffolds for spinal cord regeneration

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. De vivo, S. Krause, and D. Lammertse, Arch. Phys. Med. Rehabil., 80, 1411 (1999).

    Article  Google Scholar 

  2. J. P. Fisher, A. G. Mikos, and J. D. Bronzino, “Tissue Engineering”, pp.304–317, Taylor & Francis, New York, 2007.

    Book  Google Scholar 

  3. K. Straley, C. Po Foo, and S. Heilshorn, J. Neurotrauma, 27, 1 (2010).

    Article  Google Scholar 

  4. P. A. Lim and A. M. Two, Ann. Acad. Med. Singapore, 36, 49 (2007).

    Google Scholar 

  5. B. Q. Palsson and S. N. Bahatia, “Tissue Engineering”, Pearson Education, 2004.

    Google Scholar 

  6. B. Shrestha, K. Coykendall, Y. Li, A. Moon, P. Priyadarshani, and L. Yao, Stem. Cell Research & Therapy, 5, 91 (2014).

    Article  Google Scholar 

  7. N. T. Hiep and B. T. Lee, J. Mater. Sci.: Mater. Med., 21, 1969 (2010).

    CAS  Google Scholar 

  8. B. L. Du, C. Zeng, W. Zhang, D. Quan, and E. Ling, J. Biomed. Mater. Res., 102A, 1715 (2014).

    Article  CAS  Google Scholar 

  9. F. Zamani, M. Latifi, M. Amani-Tehran, and M. A. Shokrgozar, Fiber. Polym., 14, 568 (2013).

    Article  Google Scholar 

  10. F. Jahanmard, M. Amani-Tehran, F. Zamani, M. Nematollahi, L. Ghasemi, and M. H. Nasr-Esfahani, Int. J. Poly. Mat. Poly. Biomat., 63, 57 (2013).

    Google Scholar 

  11. F. Zamani, M. Amani-Tehran, M. Latifi, and M. A. Shokrgozar, J. Mater. Sci.: Mater. Med., 24, 1551 (2013).

    CAS  Google Scholar 

  12. F. Zamani, Ph. D. Dissertation, Amirkabir University of Technology, Tehran, 2013.

    Google Scholar 

  13. W. He, Z. Ma, W. Teo, Y. Dong, P. Robless, T. Lim, and S. Ramakrishna, J. Biomed. Mater. Res., 90A, 205 (2009).

    Article  CAS  Google Scholar 

  14. F. Zamani, M. Amani-Tehran, M. Latifi, M. A. Shokrgozar, and A. Zaminy, J. Biomed. Mater. Res., 102A, 506 (2014).

    Article  CAS  Google Scholar 

  15. M. J. Moore, A. Friedman, and E. B. Lewellyn, Biomaterials, 27, 419 (2006).

    Article  CAS  Google Scholar 

  16. A. G. Krych, G. E. Rooney, and B. C. Schermerhorn, Acta Biomaterialia, 5, 2551 (2009).

    Article  CAS  Google Scholar 

  17. E. Llorens, E. Armelin, M. Madrigal, L. Valle, C. Aleman, and J. Puiggali, Polymers, 5, 1115 (2013).

    Article  Google Scholar 

  18. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Tissue Eng., 1A, 1 (2009).

    Google Scholar 

  19. M. P. Prabhakaran, L. Ghasemi-Mobarakeh, G. Jin, and S. Ramakrishna, J. Biosci. Bioeng., 112, 501 (2011).

    Article  CAS  Google Scholar 

  20. A. Al-Majed, C. M. Neumann, T. M. Brushart, and T. Gordon, J. Neurosci., 20, 2602 (2000).

    CAS  Google Scholar 

  21. C. Y. Ho, C. H. Yao, W. C. Chen, W. C. Shen, and D. T. Bau, Evidence-Based Complementary and Alternative Medicine, 2013, Article ID 514610 (2013).

    Google Scholar 

  22. M. C. Lu, C. Y. Ho, S. F. Hsu, H. C. Lee, J. H. Lin, C. H. Yao, and Y. S. Chen, Neurorehabil. Neural. Repair., 22, 367 (2008).

    Article  Google Scholar 

  23. L. M. Y. Yu, N. D. Leipzig, and M. S. Shoichet, Mater. Today, 11b, 36 (2008).

    Article  Google Scholar 

  24. C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, Proc. Natl. Acad. Sci., 94, 8948 (1997).

    Article  CAS  Google Scholar 

  25. P. R. Bidez, A. G. Macdiarmid, E. C. Venancio, Y. Wei, and P. I. Lelkes, J. Biomater. Sci. Polym., 17, 199 (2006).

    Article  CAS  Google Scholar 

  26. Q. Z. Yu, M. M. Shi, M. Deng, M. Wang, and H. Z. Chen, Mat. Sci. Eng., 150B, 70 (2008).

    Article  Google Scholar 

  27. A. Yang, Z. Huang, G. Yin, and X. Pu, Colloid Surf. BBiointerfaces, 134, 469 (2015).

    Article  CAS  Google Scholar 

  28. L. Ghasemi-Mobarakeh, M. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, H. Baharvand, S. Kiani, S. Al-Deyab, and S. Ramakrishna, J. Tissue Eng. Regen. Med., 5, 17 (2011).

    Article  Google Scholar 

  29. C. H. Wang, Y. Q. Dong, K. Sengothi, K. L. Tan, and E. T. Kang, Synth. Met., 102, 1313 (1999).

    Article  CAS  Google Scholar 

  30. S. Kamalesh, P. Tan, J. Wang, T. Lee, E. Kang, and C. H. Wang, J. Biomed. Mater. Res., 52, 467 (2000).

    Article  CAS  Google Scholar 

  31. I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met., 114, 109 (2000).

    Article  CAS  Google Scholar 

  32. M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials, 27, 2705 (2006).

    Article  CAS  Google Scholar 

  33. M. Yanilmaz and A. S. Sarac, Text. Res. J., 84, 1325 (2014).

    Article  CAS  Google Scholar 

  34. D. M. Basso and M. S. Beattie, J. Neurotrauma., 12, 1 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Zamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, F., Amani-Tehran, M., Zaminy, A. et al. Conductive 3D structure nanofibrous scaffolds for spinal cord regeneration. Fibers Polym 18, 1874–1881 (2017). https://doi.org/10.1007/s12221-017-7349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7349-7

Keywords

Navigation