Skip to main content
Log in

Humidity to electricity converter based on oxide nanoparticles

  • Advanced Nanomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study is devoted to the development of new oxide materials and devices based on them for direct long-term production of electricity from ambient humidity, which can be used as an auxiliary power supply system for self-sufficient buildings. The simplest device, a tablet pressed from these powders, generates an electrical potential in the presence of a moisture gradient inside the sample. The output voltage level of the converter depends on the type of material and the porous structure of the converter. There is a dependence of the sign of the output voltage on the type of material, which can be related to the type and sign of the surface centers of the converter material particles. The main mechanism of the converter operation is the generation of the streaming potential during the movement of adsorbed moisture (water molecules) in the porous structure of the converter under the influence of the ambient air humidity gradient. An increase in converter thickness increases the generation time of the output voltage by up to several tens of hours, both with an increase and a decrease in the humidity level in the compartment. The results of this study will help to use a huge reservoir of low-potential energy contained in gaseous water molecules to generate "green" electricity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. Shen D, Duley WW, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou YN (2020) Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv Mater 32:2003722. https://doi.org/10.1002/adma.202003722

    Article  CAS  Google Scholar 

  3. Zhao F, Cheng H, Zhang Z, Jiang L, Qu L (2015) Direct power generation from a graphene oxide film under moisture. Adv Mater 27:4351–4357. https://doi.org/10.1002/adma.201501867

    Article  CAS  Google Scholar 

  4. Shen D, Xiao M, Zou G, Liu L, Duley WW, Zhou YN (2018) Self-powered wearable electronics based on moisture enabled electricity generation. Adv Mater 30:1705925. https://doi.org/10.1002/adma.201705925

    Article  CAS  Google Scholar 

  5. Liu X, Gao H, Ward JE, Liu X, Yin B, Fu T, Chen J, Lovley DR, Yao J (2020) Power generation from ambient humidity using protein nanowires. Nature 578:550–554. https://doi.org/10.1038/s41586-020-2010-9

    Article  CAS  Google Scholar 

  6. Liu J, Qi Y, Liu D, Dong D, Liu D, Li Z (2019) Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith. J Mater Sci 54:4831–4841. https://doi.org/10.1007/s10853-018-3183-6

    Article  CAS  Google Scholar 

  7. Mao M, Yu K, Cao CF, Gong LX, Zhang GD, Zhao L, Song P, Gao JF, Tang LC (2022) Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem Eng J 427:131615. https://doi.org/10.1016/j.cej.2021.131615

    Article  CAS  Google Scholar 

  8. Yang Y, Yin LC, Gong Y, Niu P, Wang JQ, Gu L, Chen X, Liu G, Wang L, Cheng HM (2018) An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv Mater 30:1704479. https://doi.org/10.1002/adma.201704479

    Article  CAS  Google Scholar 

  9. Doroshkevich AS, Lyubchyk AI, Islamov AK, Turchenko VA, Zelenyak TY, Shylo AV, Balasoiu M, Saprykina AV et al (2017) Nonequilibrium chemo-electronic conversion of water on the nanosized YSZ: experiment and molecular dynamics modelling problem formulation. J Phys Conf Ser 848:012021. https://doi.org/10.1088/1742-6596/848/1/012021

    Article  CAS  Google Scholar 

  10. Moià-Pol A, Rosselló-Batle B, Carmona C, Alorda B (2016) Net zero emissions for a seminar room in the University of Balearic Islands. RE&PQJ 14:432–435. https://doi.org/10.24084/repqj14.355

    Article  Google Scholar 

  11. Danilenko I, Glazunov F, Konstantinova T, Volkova G, Burkhovetski V (2013) Effect of oxide nanofillers on fabrication, structure, and properties of zirconia-based composites. J Eur Ceram Soc 33:2321–2325. https://doi.org/10.1016/j.jeurceramsoc.2013.01.039

    Article  CAS  Google Scholar 

  12. Zālīte I, Grase L, Lagzdiņa S, Rašmane D (2019) Porous ceramics from Al2O3 nanopowders. Key Eng Mater 850:273–278

    Article  Google Scholar 

  13. Viazzi C, Bonino J, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol-gel route. J Alloys Compd 452:377–383. https://doi.org/10.1016/j.jallcom.2006.10.155

    Article  CAS  Google Scholar 

  14. Witz G, Shklover V, Steurer W, Bachegowda S, Bossmann H (2007) Phase evolution in Yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc 90:2935–2940. https://doi.org/10.1111/j.1551-2916.2007.01785.x

    Article  CAS  Google Scholar 

  15. Cao J, Liu F, Lin Q, Zhang Y (2008) Hydrothermal synthesis of xonotlite from carbide slag. Prog Nat Sci 18:1147–1153. https://doi.org/10.1016/j.pnsc.2008.01.036

    Article  CAS  Google Scholar 

  16. Danilenko I, Konstantinova T, Pilipenko N, Volkova G, Glasunova V (2011) Estimation of agglomeration degree and nanoparticles shape of zirconia nanopowders. Part Part Syst Charact 28:13–18. https://doi.org/10.1002/ppsc.200800041

    Article  CAS  Google Scholar 

  17. Pudipeddi M, Zannou E, Vasanthavada M, Dontabhaktuni A, Royce A, Joshi Y, Serajuddin A (2008) Measurement of surface ph of pharmaceutical solids: a critical evaluation of indicator dye-sorption method and its comparison with slurry pH method. J Pharm Sci 97:1831–1842. https://doi.org/10.1002/jps

    Article  CAS  Google Scholar 

  18. Danchenko Yu, Kariev A, Andronov V, Cherkashina A, Lebedev V, Shkolnikova T, Burlutskyi O, Kosse A, Lutsenko Yu, Yavors’ka D (2020) A Research of chemical nature and surface properties of plant disperse fillers. East Eur J Enterp Technol 1:32–41. https://doi.org/10.15587/1729-4061.2020.193383

    Article  CAS  Google Scholar 

  19. Gana K, Xub J, Gaic Y, Wud J, Lic S, Lua Y, Huoa W, Zhanga X, Yang J (2017) In-situ coagulation of yttria-stabilized zirconia suspension via dispersant hydrolysis using sodium tripolyphosphate. J Eur Ceram Soc 37:4868–4875. https://doi.org/10.1016/j.jeurceramsoc.2017.05.044

    Article  CAS  Google Scholar 

  20. Xu J, Gan K, Yang M, Qu Y, Wu J, Yang J (2015) Direct coagulation casting of yttria-stabilized zirconia using magnesiumcitrate and glycerol diacetate. Ceram Int 41:5772–5778. https://doi.org/10.1016/j.ceramint.2014.12.163

    Article  CAS  Google Scholar 

  21. Goyne KW, Zimmerman AR, Newalkar BL, Komarneni S, Brantley SL, Chorover J (2002) Surface charge of variable porosity Al2O3(s) and SiO2(s) adsorbents. J Porous Mater 9:243–256. https://doi.org/10.1023/A:1021631827398

    Article  CAS  Google Scholar 

  22. Avci G, Akhlaghi O, Ustbas B, Ozbay C, Menceloglu YZ, Akbulut O (2016) A PCE-based rheology modifier allows machining of solid cast green bodies of alumina. Ceram Int 42:3757–3761. https://doi.org/10.1016/j.ceramint.2015.11.004

    Article  CAS  Google Scholar 

  23. Arai Y (1996) Chemistry of powder production 1st edn. Chapman and Hall, London. Doi: https://doi.org/10.1007/978-94-009-1493-3

  24. van der Heyden F, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95:116104. https://doi.org/10.1103/PhysRevLett.95.116104

    Article  CAS  Google Scholar 

  25. van der Heyden F, Stein D, Besteman K, Lemay SG, Dekker C (2006) Charge inversion at high ionic strength studied by streaming currents. Phys Rev Lett 96:224502. https://doi.org/10.1103/PhysRevLett.96.224502

    Article  CAS  Google Scholar 

  26. Xiao Y, Shen D, Zou G, Wu A, Liu L, Duley W, Zhou Y (2019) Self-powered, flexible and remote-controlled breath monitor based on tio2 nanowire networks. Nanotechnology 30:325503. https://doi.org/10.1088/1361-6528/ab1b93

    Article  CAS  Google Scholar 

  27. Kostiuchenko Z, Cui J, Lemay S (2020) Electrochemistry in micro- and nanochannels controlled by streaming potentials. J Phys Chem C 124:2656–2663. https://doi.org/10.1021/acs.jpcc.9b08584

    Article  CAS  Google Scholar 

  28. Xue G, Xu Y, Ding T, Li J, Yin J, Fei W, Cao Y, Yu J, Yuan L, Gong L, Chen J, Deng S, Zhou J, Guo W (2017) Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotechnol 12:317–321. https://doi.org/10.1038/nnano.2016.300

    Article  CAS  Google Scholar 

  29. Ctibora P, Sedlacek J, Neufuss K (2003) Influence of chemical composition on dielectric properties of Al2O3 and ZrO2 plasma deposits. Ceram Int 29:527–532. https://doi.org/10.1016/S0272-8842(02)00197-9

    Article  CAS  Google Scholar 

  30. Jbara A, Othaman Z, Saeed AH, M, (2017) Electronic and optical properties of γ- and θ-alumina by first principle calculations. Adv Sci Eng Med 9:287–293. https://doi.org/10.1166/asem.2017.2007

    Article  CAS  Google Scholar 

  31. Hossain SKS, Roy PK (2018) Study of physical and dielectric properties of biowaste derived synthetic wollastonite. J Asian Ceram Soc 6:289–298. https://doi.org/10.1080/21870764.2018.1508549

    Article  Google Scholar 

  32. Mohamed AO, Paleologos EK (2018) Fundamentals of geoenvironmental engineering understanding: soil, water, and pollutant interaction and transport, 1st edn. Elsevier Inc., Netherland

    Google Scholar 

  33. Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Sci Soc Am J 57:660–667. https://doi.org/10.2136/sssaj1993.03615995005700030005x

    Article  Google Scholar 

  34. Zeng Y, Grandner S, Oliveira CLP, Thunemann AF, Paris O, Pedersen JS, Klapp SHL, von Klitzing R (2011) Effect of particle size and Debye length on order parameters of colloidal silicas suspensions under confinement. Soft Matter 7:10899–10909. https://doi.org/10.1039/c1sm05971h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful the H2020-MSCA-RISE-2019 Program, project 871284 SSHARE for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Danilenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilenko, I., Gorban, O., Shylo, A. et al. Humidity to electricity converter based on oxide nanoparticles. J Mater Sci 57, 8367–8380 (2022). https://doi.org/10.1007/s10853-021-06657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06657-9

Navigation