Skip to main content
Log in

A thermodynamic description for the Co–Cr–Fe–Mn–Ni system

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on the representative Co–Cr–Fe–Mn–Ni HEAs, many studies have been conducted to develop new HEAs with improved strength. The new HEA design can be efficient when utilizing computational thermodynamic prediction of phase equilibria because the phase distribution of alloys directly affects mechanical properties. Phase equilibria in HEAs can be effectively predicted by the CALPHAD (CALculation of PHAse Diagram) type thermodynamic calculation techniques, but the prediction of phase equilibria even for the well-known Co–Cr–Fe–Mn–Ni HEA system is still challenging due to the incompleteness of the thermodynamic descriptions for the constituent ternary systems. The purpose of the present work was to develop a self-consistent thermodynamic description for the quinary system by completing thermodynamic descriptions for all the constituent ternary sub-systems, newly carrying out thermodynamic assessments for the Co–Cr–Mn and Cr–Mn–Ni ternary systems. The reliability of the developed Co–Cr–Fe–Mn–Ni quinary thermodynamic description was confirmed by comparing calculated vertical sections of the quinary phase diagram with available experimental information.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  2. Yeh J-W, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  4. Jo YH, Jung S, Choi W-M, Sohn SS, Kim HS, Lee B-J, Kim NJ, Lee S (2017) Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15719

    Article  CAS  Google Scholar 

  5. Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19:698–706. https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  6. Kumar NAPK, Li C, Leonard KJ, Bei H, Zinkle SJ (2016) Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater 113:230–244. https://doi.org/10.1016/j.actamat.2016.05.007

    Article  CAS  Google Scholar 

  7. He MR, Wang S, Shi S, Jin K, Bei H, Yasuda K, Matsumura S, Higashida K, Robertson IM (2017) Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater 126:182–193. https://doi.org/10.1016/j.actamat.2016.12.046

    Article  CAS  Google Scholar 

  8. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  9. Ming K, Bi X, Wang J (2017) Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys. Mater Charact 134:194–201. https://doi.org/10.1016/j.matchar.2017.10.022

    Article  CAS  Google Scholar 

  10. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534:227–230. https://doi.org/10.1038/nature17981

    Article  CAS  Google Scholar 

  11. Gao N, Lu DH, Zhao YY, Liu XW, Liu GH, Wu Y, Liu G, Fan ZT, Lu ZP, George EP (2019) Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. J Alloy Compd 792:1028–1035. https://doi.org/10.1016/j.jallcom.2019.04.121

    Article  CAS  Google Scholar 

  12. Wang Z, Baker I, Guo W, Poplawsky JD (2017) The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 126:346–360. https://doi.org/10.1016/j.actamat.2016.12.074

    Article  CAS  Google Scholar 

  13. Peng H, Hu L, Li L, Gao J, Zhang Q (2020) On the correlation between L12 nanoparticles and mechanical properties of (NiCo)52+2x(AlTi)4+2xFe29-4xCr15 (x=0-4) high-entropy alloys. J Alloy Compd 817:152750. https://doi.org/10.1016/j.jallcom.2019.152750

    Article  CAS  Google Scholar 

  14. Jo YH, Jung S, Choi W-M, Sohn SS, Kim HS, Lee B-J, Kim NJ, Lee S (2017) Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun 8:15719. https://doi.org/10.1038/ncomms15719

    Article  CAS  Google Scholar 

  15. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200. https://doi.org/10.1038/srep06200

    Article  CAS  Google Scholar 

  16. Zhang Y, Chen Z, Cao D, Zhang J, Zhang P, Tao Q, Yang X (2019) Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy. J Mater Res Tech 8:726–736. https://doi.org/10.1016/j.jmrt.2018.04.020

    Article  CAS  Google Scholar 

  17. Otto F, Dlouhý A, Pradeep KG, Kuběnová M, Raabe D, Eggeler G, George EP (2016) Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112:40–52. https://doi.org/10.1016/j.actamat.2016.04.005

    Article  CAS  Google Scholar 

  18. Stepanov ND, Shaysultanov DG, Ozerov MS, Zherebtsov SV, Salishchev GA (2016) Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Mater Lett 185:1–4. https://doi.org/10.1016/j.matlet.2016.08.088

    Article  CAS  Google Scholar 

  19. Zhu ZG, Ma KH, Yang X, Shek CH (2017) Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100–x)Coxhigh entropy alloys. J Alloy Compd 695:2945–2950. https://doi.org/10.1016/j.jallcom.2016.11.376

    Article  CAS  Google Scholar 

  20. Christofidou KA, Pickering EJ, Orsatti P, Mignanelli PM, Slater TJA, Stone HJ, Jones NG (2018) On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 92:84–92. https://doi.org/10.1016/j.intermet.2017.09.011

    Article  CAS  Google Scholar 

  21. Christofidou KA, McAuliffe TP, Mignanelli PM, Stone HJ, Jones NG (2019) On the prediction and the formation of the sigma phase in CrMnCoFeNix high entropy alloys. J Alloy Compd 770:285–293. https://doi.org/10.1016/j.jallcom.2018.08.032

    Article  CAS  Google Scholar 

  22. Bloomfield ME, Christofidou KA, Jones NG (2019) Effect of Co on the phase stability of CrMnFeCoxNi high entropy alloys following long-duration exposures at intermediate temperatures. Intermetallics 114:106582. https://doi.org/10.1016/j.intermet.2019.106582

    Article  CAS  Google Scholar 

  23. Bloomfield ME, Christofidou KA, Monni F, Yang Q, Hang M, Jones NG (2021) The influence of Fe variations on the phase stability of CrMnFexCoNi alloys following long-duration exposures at intermediate temperatures. Intermetallics 131:107108. https://doi.org/10.1016/j.intermet.2021.107108

    Article  CAS  Google Scholar 

  24. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the calphad method. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. TCFE2000: The Thermo-Calc Steel Database, Upgraded by B.-J Lee, B. Sundman at KTH, KTH, Stockholm, 1999.

  26. Choi WM, Jo YH, Kim DG, Sohn SS, Lee S, Lee BJ (2018) A thermodynamic modelling of the stability of sigma phase in the Cr–Fe–Ni–V high-entropy alloy system. J Phase Equilibria Diffus 39:694–701. https://doi.org/10.1007/s11669-018-0672-x

    Article  CAS  Google Scholar 

  27. Choi W-M, Jo YH, Kim DG, Sohn SS, Lee S, Lee B-J (2019) A thermodynamic description of the Co–Cr–Fe–Ni–V system for high-entropy alloy design. Calphad 66:101624. https://doi.org/10.1016/j.calphad.2019.05.001

    Article  CAS  Google Scholar 

  28. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348. https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  29. Hillert M, Jarl M (1978) A model for allloying effects in ferromagnetic metals. Calphad 2:227–238

    Article  CAS  Google Scholar 

  30. Kusoffsky A, Jansson B (1997) A thermodynamic evaluation of the Co–Cr and the C–Co–Cr systems. Calphad 21:321–333. https://doi.org/10.1016/s0364-5916(97)00033-3

    Article  CAS  Google Scholar 

  31. Andersson JO, Sundman B (1987) Thermodynamic properties of the Cr–Fe system. Calphad 11:83–92

    Article  CAS  Google Scholar 

  32. Lee B-J (1993) A thermodynamic evaluation of the Cr–Mn and Fe–Cr–Mn systems. Metall Trans A 24:1919–1933

    Article  Google Scholar 

  33. Liu XL, Lindwall G, Gheno T, Liu ZK (2016) Thermodynamic modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni ternary systems towards a description for Al–Co–Cr–Ni. Calphad 52:125–142. https://doi.org/10.1016/j.calphad.2015.12.007

    Article  CAS  Google Scholar 

  34. Dupin N, Ansara I (1999) On the sublattice formalism applied to the B2 phase. Z Metallkd 90:76–85

    CAS  Google Scholar 

  35. S. H. Liu, Ph.D. Thesis, Central South University, China, 2010.

  36. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425. https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  37. Guillermet AF (1987) Critical evaluation of the thermodynamic properties of the iron-cobalt system. High Temp High Press 19:477–499

    Google Scholar 

  38. Huang W (1989) An assessment of the Co–Mn system. Calphad 13:231–242

    Article  CAS  Google Scholar 

  39. Guillermet AF (1987) Assessment of the thermodynamic properties of the Ni–Co system. Z Metallkd 78:639–647

    Google Scholar 

  40. Lee B-J (1992) On the stability of Cr carbides. Calphad 16:121–149. https://doi.org/10.1016/0364-5916(92)90002-F

    Article  CAS  Google Scholar 

  41. Huang W (1989) An assessment of the Fe–Mn system. Calphad 13:231–242. https://doi.org/10.1016/0364-5916(89)90003-5

    Article  CAS  Google Scholar 

  42. Xing ZS, Gohil DD, Dinsdale AT (1985) DMA(A) 103. National Physical Laboratory, London

    Google Scholar 

  43. Unpublished work, NPL (1989).

  44. Wang J, Lu XG, Zhu N, Zheng W (2017) Thermodynamic and diffusion kinetic studies of the Fe–Co system. Calphad 58:82–100. https://doi.org/10.1016/j.calphad.2017.06.001

    Article  CAS  Google Scholar 

  45. Servant C, Sundman B, Lyon O (2001) Thermodynamic assessment of the Cu–Fe–Ni system. Calphad 25:79–95. https://doi.org/10.1016/S0364-5916(01)00032-3

    Article  CAS  Google Scholar 

  46. Zhang L, Du Y (2007) Thermodynamic description of the Al–Fe–Ni system over the whole composition and temperature ranges: modeling coupled with key experiment. Calphad 31:529–540. https://doi.org/10.1016/j.calphad.2007.03.003

    Article  CAS  Google Scholar 

  47. Franke P, Seifert HJ (2011) The influence of magnetic and chemical ordering on the phase diagram of CrFeNi. Calphad 35:148–154. https://doi.org/10.1016/j.calphad.2010.10.006

    Article  CAS  Google Scholar 

  48. Lee B-J (1993) Revision of thermodynamic descriptions of the Fe–Cr and Fe–Ni liquid phases. Calphad 17:251–268

    Article  CAS  Google Scholar 

  49. Cacciamani G, Dinsdale A, Palumbo M, Pasturel A (2010) The Fe–Ni system: thermodynamic modelling assisted by atomistic calculations. Intermetallics 18:1148–1162. https://doi.org/10.1016/j.intermet.2010.02.026

    Article  CAS  Google Scholar 

  50. Xia CH, Wang Y, Wang JJ, Lu XG, Zhang L (2021) Thermodynamic assessment of the Co–Fe–Ni system and diffusion study of its fcc phase. J Alloy Compd 853:157165. https://doi.org/10.1016/j.jallcom.2020.157165

    Article  CAS  Google Scholar 

  51. Oikawa K, Qin GW, Ikeshoji T, Kainuma R, Ishida K (2002) Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co–Cr system. Acta Mater 50:2223–2232. https://doi.org/10.1016/S1359-6454(01)00433-5

    Article  CAS  Google Scholar 

  52. Li Z, Mao H, Korzhavyi PA, Selleby M (2016) Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations. Calphad 52:1–7. https://doi.org/10.1016/j.calphad.2015.10.013

    Article  CAS  Google Scholar 

  53. Wang P, Peters MC, Kattner UR, Choudhary K, Olson GB (2019) Thermodynamic analysis of the topologically close packed σ phase in the Co–Cr system. Intermetallics 105:13–20. https://doi.org/10.1016/j.intermet.2018.11.004

    Article  CAS  Google Scholar 

  54. Zhao N, Liu W, Wang JJ, Lu XG, Zhang L (2020) Thermodynamic assessment of the Ni–Co–Cr system and diffusion study of its fcc phase. Calphad 71:101996. https://doi.org/10.1016/j.calphad.2020.101996

    Article  CAS  Google Scholar 

  55. Xiong W, Hedström P, Selleby M, Odqvist J, Thuvander M, Chen Q (2011) An improved thermodynamic modeling of the FeCr system down to zero kelvin coupled with key experiments. Calphad 35:355–366. https://doi.org/10.1016/j.calphad.2011.05.002

    Article  CAS  Google Scholar 

  56. Jacob A, Povoden-Karadeniz E, Kozeschnik E (2018) Revised thermodynamic description of the Fe–Cr system based on an improved sublattice model of the σ phase. Calphad 60:16–28. https://doi.org/10.1016/j.calphad.2017.10.002

    Article  CAS  Google Scholar 

  57. Tang F, Hallstedt B (2016) Using the PARROT module of thermo-calc with the Cr–Ni system as example. Calphad 55:260–269. https://doi.org/10.1016/j.calphad.2016.10.003

    Article  CAS  Google Scholar 

  58. Hao L, Ruban A, Xiong W (2021) CALPHAD modeling based on Gibbs energy functions from zero kevin and improved magnetic model: a case study on the Cr–Ni system. Calphad 73:102268. https://doi.org/10.1016/j.calphad.2021.102268

    Article  CAS  Google Scholar 

  59. Witusiewicz VT, Sommer F, Mittemeijer EJ (2004) Reevaluation of the Fe–Mn phase diagram. J Phase Equilibria Diffus 25:346–354. https://doi.org/10.1361/15477030420115

    Article  CAS  Google Scholar 

  60. Bigdeli S, Selleby M (2019) A thermodynamic assessment of the binary Fe–Mn system for the third generation of Calphad databases. Calphad 64:185–195. https://doi.org/10.1016/j.calphad.2018.11.011

    Article  CAS  Google Scholar 

  61. Xiong W, Zhang H, Vitos L, Selleby M (2011) Magnetic phase diagram of the Fe–Ni system. Acta Mater 59:521–530. https://doi.org/10.1016/j.actamat.2010.09.055

    Article  CAS  Google Scholar 

  62. Ohnuma I, Shimenouchi S, Omori T, Ishida K, Kainuma R (2019) Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system. Calphad 67:101677. https://doi.org/10.1016/j.calphad.2019.101677

    Article  CAS  Google Scholar 

  63. Guillermet AF (1989) Assessing the thermodynamics of the Fe–Co–Ni system using a calphad predictive technique. Calphad 13:1–22. https://doi.org/10.1016/0364-5916(89)90034-5

    Article  CAS  Google Scholar 

  64. Lee B-J (1993) A thermodynamic evaluation of the Fe–Cr–Ni system. J Korean Inst Met Mater 31:480–489

    CAS  Google Scholar 

  65. Dombre MAX, Campos OS, Valignat N, Allibert C, Bernard C, Driole J (1979) Solid state phase equilibrium in the ternary Fe–Co–Cr system: experimental determination of isothermal sections in the temperature range 800–1300°C. J Less-Common Met 66:1–11

    Article  CAS  Google Scholar 

  66. Yang S, Jiang M, Li H, Liu Y, Wang L (2012) Assessment of Co–Cr–Ni ternary system by CALPHAD technique. Rare Met 31:75–80. https://doi.org/10.1007/s12598-012-0466-y

    Article  CAS  Google Scholar 

  67. Miettinen J (1999) Thermodynamic reassessment of Fe–Cr–Ni system with emphasis on the iron-rich corner. Calphad 23:231–248. https://doi.org/10.1016/S0364-5916(99)00027-9

    Article  CAS  Google Scholar 

  68. Tomiska J (2004) The system Fe–Ni–Cr: revision of the thermodynamic description. J Alloy Compd 379:176–187. https://doi.org/10.1016/j.jallcom.2004.02.027

    Article  CAS  Google Scholar 

  69. Chvátalová K, Houserová J, Šob M, Vřešt’ál J (2004) First-principles calculations of energetics of sigma phase formation and thermodynamic modelling in Fe–Ni–Cr system. J Alloy Compd 378:71–74. https://doi.org/10.1016/j.jallcom.2003.10.071

    Article  CAS  Google Scholar 

  70. Huang W (1990) Thermodynamics of the Co–Fe–Mn System. Calphad 14:11–22. https://doi.org/10.1016/0364-5916(90)90035-X

    Article  CAS  Google Scholar 

  71. Zhang L, Du Y, Xu H, Liu S, Liu Y, Zhengc F, Dupin N, Zhou H, Tang C (2009) Phase equilibria and thermal analysis in the Fe–Mn–Ni system. Int J Mater Res 100:160–175. https://doi.org/10.3139/146.110002

    Article  CAS  Google Scholar 

  72. Li H, Ruan J, Ueshima N, Oikawa K (2021) Investigation on the σ-phase-related equilibria in Cr–Mn–Co system. J Alloy Compd 867:1–8. https://doi.org/10.1016/j.jallcom.2021.159024

    Article  CAS  Google Scholar 

  73. Li H, Ruan J, Ueshima N, Oikawa K (2020) Experimental investigations of fcc/bcc phase equilibria in the Cr–Mn–Ni ternary system. Intermetallics 127:106994. https://doi.org/10.1016/j.intermet.2020.106994

    Article  CAS  Google Scholar 

  74. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. Calphad 9:153–190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  75. Zhang L, Wang J, Du Y, Hu R, Nash P, Lu XG, Jiang C (2009) Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD. Acta Mater 57:5324–5341. https://doi.org/10.1016/j.actamat.2009.07.031

    Article  CAS  Google Scholar 

  76. Frisk K (1993) A thermodynamic evaluation of the Cr–Mn–N system. Calphad 17:335–349. https://doi.org/10.1016/0364-5916(93)90009-Z

    Article  CAS  Google Scholar 

  77. Gustafson P (1988) A thermodynamic evaluation of the Cr–Ni–W system. Calphad 12:277–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (2016M3D1A1023383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, HS., Choi, WM. & Lee, BJ. A thermodynamic description for the Co–Cr–Fe–Mn–Ni system. J Mater Sci 57, 1373–1389 (2022). https://doi.org/10.1007/s10853-021-06604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06604-8

Navigation