Skip to main content
Log in

Superhydrophobic and magnetic PS/Fe3O4 sponge for remote oil removal under magnetic driven, continuous oil collection, and oil/water emulsion separation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Superhydrophobic and magnetic materials with multiple functions (e.g., continuous oil collection, remote oil removal in confined spaces under magnetic driven, separation of oil/water emulsions, and good oil absorption capacity with robust stability) are highly required for practical oily wastewater remediation, but still a challenge to be realized. For this purpose, superhydrophobic Fe3O4 nanoparticles/polystyrene (PS) composite sponge has been fabricated via high internal phase emulsion template method. The as-prepared sponge exhibits high water-repellence and superoleophilicity with water/oil contact angles are 155º and 0º, respectively. Given the magnetic properties of Fe3O4, our sponge displays the capacity for remote oil capture under magnetic driven. Additionally, continuous oil collection has been also realized with the equipment of pumper. Different from some previous reported sponges, our sponge also possesses the unique ability to separate surfactant stabilized oil/water emulsion. Besides, our sponge can also act as a high-efficiency oil absorbent with robust cycling stability (oil recovery rate can reach 92%, even after 10 absorption-centrifugation cycles). These outstanding functions make our sponge hold great potential for the purification of oily wastewater.

Graphical abstract

This work reported a simple and environmentally-friendly approach to prepare multi-functional magnetic and superhydrophobic sponges via high internal phase emulsion (HIPE) method. The PS/Fe3O4 composite sponges exhibited unique properties: (i) high water-repellence and good oleophilicity; (ii) the function as a high-efficiency oil absorbent with robust cycling stability; (iii) ability to remove oil remotely under magnetic driven; (iv) continuous oil collection; (v) the capacity to separate surfactant stabilized oil/water emulsion. These outstanding performances make our sponge is of great importance for practical oily wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Almeda R, Wambaugh Z, Wang ZC, Hyatt C, Liu ZF, Buskey EJ (2013) Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons. PLoS ONE 8:212. https://doi.org/10.1371/journal.pone.0067212

    Article  CAS  Google Scholar 

  2. Rohal M, Ainsworth C, Lupher B, Montagna PA, Paris CB, Perlin N, Suprenand PM, Yoskowitz D (2020) The effect of the deepwater horizon oil spill on two ecosystem services in the Northern Gulf of Mexico. Environ Model Softw 133:104793. https://doi.org/10.1016/j.envsoft.2020.104793

    Article  Google Scholar 

  3. Ainsworth CH, Samhouri JF, Busch DS, Cheung WWL, Dunne J, Okey TA (2011) Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES J Mar Sci 68:1217–1229. https://doi.org/10.1093/icesjms/fsr043

    Article  Google Scholar 

  4. Ye F, Jiang X, Mi YZ, Kuang JZ, Huang ZM, Yu F, Zhang ZJ, Yuan HK (2019) Preparation of oxidized carbon black grafted with nanoscale silica and its demulsification performance in water-in-oil emulsion. Colloid Surf A-Physicochem Eng Asp 582:123878. https://doi.org/10.1016/j.colsurfa.2019.123878

    Article  CAS  Google Scholar 

  5. Wang D, Zhao ZQ, Qiao CY, Yang WS, Huang YY, McKay P, Yang DZ, Liu Q, Zeng HB (2020) Techniques for treating slop oil in oil and gas industry: a short review. Fuel 279:118482. https://doi.org/10.1016/j.fuel.2020.118482

    Article  CAS  Google Scholar 

  6. Aurell J, Gullett BK (2010) Aerostat sampling of PCDD/PCDF emissions from the gulf oil spill in situ burns. Environ Sci Technol 44:9431–9437. https://doi.org/10.1021/es103554y

    Article  CAS  Google Scholar 

  7. Abidli A, Huang YF, Cherukupally P, Bilton AM, Park CB (2020) Novel separator skimmer for oil spill cleanup and oily wastewater treatment: From conceptual system design to the first pilot-scale prototype development. Environ Technol Innov 18:100598. https://doi.org/10.1016/j.eti.2019.100598

    Article  Google Scholar 

  8. Su XJ, Li HQ, Lai XJ, Zhang L, Liao XF, Wang J, Chen ZH, He J, Zeng XR (2018) Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation. ACS Appl Mater Interfaces 10:4213–4221. https://doi.org/10.1021/acsami.7b15909

    Article  CAS  Google Scholar 

  9. Yang RL, Zhu YJ, Chen FF, Qin DD, Xiong ZC (2018) Recyclable, fire-resistant, superhydrophobic, and magnetic paper based on ultralong hydroxyapatite nanowires for continuous oil/water separation and oil collection. Acs Sustainable Chemistry & Engineering 6:10140–10150. https://doi.org/10.1021/acssuschemeng.8b01463

    Article  CAS  Google Scholar 

  10. Li XP, Cao M, Shan HT, Tezer FH, Li BA (2019) Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation. Chem Eng J 358:1101–1113. https://doi.org/10.1016/j.cej.2018.10.097

    Article  CAS  Google Scholar 

  11. Liu SZ, Zhang Q, Fan LY, Wang R, Yang MJ, Zhou Y (2020) 3D superhydrophobic sponge coated with magnesium hydroxide for effective oil/water mixture and emulsion separation. Ind Eng Chem Res 59:11713–11722. https://doi.org/10.1021/acs.iecr.0c01276

    Article  CAS  Google Scholar 

  12. Guo HS, Yang J, Xu T, Zhao WQ, Zhang JM, Zhu YN, Wen CY, Li QS, Sui XJ, Zhang L (2019) A robust cotton textile-based material for high-flux oil-water separation. ACS Appl Mater Interfaces 11:13704–13713. https://doi.org/10.1021/acsami.9b01108

    Article  CAS  Google Scholar 

  13. Gu JC, Xiao P, Chen J, Zhang JW, Huang YJ, Chen T (2014) Janus polymer/carbon nanotube hybrid membranes for oil/water separation. ACS Appl Mater Interfaces 6:16204–16209. https://doi.org/10.1021/am504326m

    Article  CAS  Google Scholar 

  14. Xu Y, Wang G, Zhu L, Shen L, Zhang Z, Ren T, Zeng Z, Chen T, Xue Q (2021) Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation. J Hazard Mater 407:124374–124374. https://doi.org/10.1016/j.jhazmat.2020.124374

    Article  CAS  Google Scholar 

  15. Gao ML, Zhao SY, Chen ZY, Liu L, Han ZB (2019) Superhydrophobic/superoleophilic MOF composites for oil-water separation. Inorg Chem 58:2261–2264. https://doi.org/10.1021/acs.inorgchem.8b03293

    Article  CAS  Google Scholar 

  16. Lv J, Gong ZJ, He ZK, Yang J, Chen YQ, Tang CY, Liu Y, Fan MK, Lau WM (2017) 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation. Journal of Materials Chemistry A 5:12435–12444. https://doi.org/10.1039/c7ta02202f

    Article  CAS  Google Scholar 

  17. Luo YQ, Song X, Song F, Wang XL, Wang YZ (2019) A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation. J Colloid Interface Sci 549:123–132. https://doi.org/10.1016/j.jcis.2019.04.055

    Article  CAS  Google Scholar 

  18. Cao JYQ, Chen SC, Zhang J, Xie YY, Wang YZ (2021) A self-supporting, surface carbonized filter paper membrane for efficient water-in-oil emulsion separation. Chin J Polym Sci 39:181–188. https://doi.org/10.1007/s10118-020-2492-9

    Article  CAS  Google Scholar 

  19. Li X, Cao M, Shan H, Handan Tezel F, Li B (2019) Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation. Chem Eng J 358:1101–1113. https://doi.org/10.1016/j.cej.2018.10.097

    Article  CAS  Google Scholar 

  20. Zhou S, Hao GZ, Zhou X, Jiang W, Wang TH, Zhang N, Yu LH (2016) One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil-water separation. Chem Eng J 302:155–162. https://doi.org/10.1016/j.cej.2016.05.051

    Article  CAS  Google Scholar 

  21. Hou K, Jin Y, Chen JH, Wen XF, Xu SP, Cheng JA, Pi PH (2017) Fabrication of superhydrophobic melamine sponges by thiol-ene click chemistry for oil removal. Mater Lett 202:99–102. https://doi.org/10.1016/j.matlet.2017.05.062

    Article  CAS  Google Scholar 

  22. Zhang L, Dong DY, Shao LS, Xia YF, Zeng T, Wang YH (2019) Cost-effective one-pot surface modified method to engineer a green superhydrophobic sponge for efficient oil/water mixtures as well as emulsions separation. Colloid Surf A-Physicochem Eng Asp 576:43–54. https://doi.org/10.1016/j.colsurfa.2019.05.022

    Article  CAS  Google Scholar 

  23. Liu Q, Meng K, Ding K, Wang YB (2015) a superhydrophobic sponge with hierarchical structure as an efficient and recyclable oil absorbent. ChemPlusChem 80:1435–1439. https://doi.org/10.1002/cplu.201500109

    Article  CAS  Google Scholar 

  24. Zhang JC, Liu X, Chen FZ, Liu JY, Chen Y, Zhang F, Guan NQ (2020) An environmentally friendly and cost-effective method to fabricate superhydrophobic PU sponge for oil/water separation. J Dispersion Sci Technol 41:1136–1144. https://doi.org/10.1080/01932691.2019.1614458

    Article  CAS  Google Scholar 

  25. Li ZT, He FA, Lin B (2019) Preparation of magnetic superhydrophobic melamine sponge for oil-water separation. Powder Technol 345:571–579. https://doi.org/10.1016/j.powtec.2019.01.035

    Article  CAS  Google Scholar 

  26. Guselnikova O, Barras A, Addad A, Sviridova E, Szunerits S, Postnikov P, Boukherroub R (2020) Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Sep Purif Technol 240:116627. https://doi.org/10.1016/j.seppur.2020.116627

    Article  CAS  Google Scholar 

  27. Wu L, Li LX, Li BC, Zhang JP, Wang AQ (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946. https://doi.org/10.1021/am5091353

    Article  CAS  Google Scholar 

  28. Li LX, Li BC, Wu L, Zhao X, Zhang JP (2014) Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water. Chem Commun 50:7831–7833. https://doi.org/10.1039/c4cc03045a

    Article  CAS  Google Scholar 

  29. Tran VHT, Lee BK (2017) Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations. Sci Rep 7:9. https://doi.org/10.1038/s41598-017-17761-9

    Article  CAS  Google Scholar 

  30. Liang L, Liu PF, Su HJ, Qian H, Ma HK (2020) One-step fabrication of superhydrophobic sponge with magnetic controllable and flame-retardancy for oil removing and collecting. J Appl Polym Sci 137:49353. https://doi.org/10.1002/app.49353

    Article  CAS  Google Scholar 

  31. Yu C, Je J, Liu Y, Liu K, Situ Z, Tian L, Luo W, Hong P, Li Y (2020) Facile fabrication of compressible, magnetic and superhydrophobic poly(DVB-MMA) sponge for high-efficiency oil–water separation. J Mater Sci 56:3111–3126. https://doi.org/10.1007/s10853-020-05471-z

    Article  CAS  Google Scholar 

  32. Ma W, Wang H (2019) Magnetically driven motile superhydrophobic sponges for efficient oil removal. Appl Mater Today 15:263–266. https://doi.org/10.1016/j.apmt.2019.02.004

    Article  Google Scholar 

  33. Yu TL, Halouane F, Mathias D, Barras A, Wang ZW, Lv AQ, Lu SX, Xu WG, Meziane D, Tiercelin N, Szunerits S, Boukherroub R (2020) Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification. Chem Eng J 384:1233369. https://doi.org/10.1016/j.cej.2019.123339

    Article  CAS  Google Scholar 

  34. He SJ, Zhan YQ, Zhao SM, Lin L, Hu JX, Zhang GY, Zhou M (2019) Design of stable super-hydrophobic/super-oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: facial strategy, magnetic drive and continuous oil/water separation in harsh environments. Appl Surf Sci 494:1072–1082. https://doi.org/10.1016/j.apsusc.2019.07.258

    Article  CAS  Google Scholar 

  35. Shi Y, Wang B, Ye S, Zhang Y, Wang B, Feng Y, Han W, Liu C, Shen C (2021) Magnetic, superelastic and superhydrophobic porous thermoplastic polyurethane monolith with nano-Fe3O4 coating for highly selective and easy-recycling oil/water separation. Appl Surf Sci 535:147690. https://doi.org/10.1016/j.apsusc.2020.147690

    Article  CAS  Google Scholar 

  36. Li JN, Wang FJ, Wan H, Liu J, Liu ZY, Cheng K, Zou HF (2015) Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J Chromatogr A 1425:213–220. https://doi.org/10.1016/j.chroma.2015.11.044

    Article  CAS  Google Scholar 

  37. Yang J, Wang H, Tao Z, Liu X, Wang Z, Yue R, Cui Z (2019) 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism. Chem Eng J 359:149–158. https://doi.org/10.1016/j.cej.2018.11.125

    Article  CAS  Google Scholar 

  38. Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24:13748–13752. https://doi.org/10.1021/la8028935

    Article  CAS  Google Scholar 

  39. Wang YF, Xu F, Zhang L, Wei XL (2013) One-pot solvothermal synthesis of Fe3O4-PEI composite and its further modification with Au nanoparticles. J Nanopart Res 15:107. https://doi.org/10.1007/s11051-012-1338-y

    Article  CAS  Google Scholar 

  40. Pulko I, Krajnc P (2012) High internal phase emulsion templating - a path to hierarchically porous functional polymers. Macromol Rapid Commun 33:1731–1746. https://doi.org/10.1002/marc.201200393

    Article  CAS  Google Scholar 

  41. Wang ZY, Stein A (2008) Morphology control of carbon, silica, and carbon/silica nanocomposites: from 3D ordered Macro-/Mesoporous monoliths to shaped mesoporous particles. Chem Mater 20:1029–1040. https://doi.org/10.1021/cm0717864

    Article  CAS  Google Scholar 

  42. Zhang N, Zhong S, Zhou X, Jiang W, Wang T, Fu J (2016) Superhydrophobic P (St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery. Chem Eng J 298:117–124. https://doi.org/10.1016/j.cej.2016.03.151

    Article  CAS  Google Scholar 

  43. Foudazi R (2021) HIPEs to PolyHIPEs. React Funct Polym 164:104917. https://doi.org/10.1016/j.reactfunctpolym.2021.104917

    Article  CAS  Google Scholar 

  44. Xu L, Chen Y, Liu N, Zhang W, Yang Y, Cao Y, Lin X, Wei Y, Feng L (2015) Breathing demulsification: a three-dimensional (3D) free-standing superhydrophilic sponge. ACS Appl Mater Interfaces 7:22264–22271. https://doi.org/10.1021/acsami.5b07530

    Article  CAS  Google Scholar 

  45. Paljevac M, Krajnc P (2020) Hierarchically porous poly(glycidyl methacrylate) through hard sphere and high internal phase emulsion templating. Polymer 209:123064. https://doi.org/10.1016/j.polymer.2020.123064

    Article  CAS  Google Scholar 

  46. Cao GL, Zhang WB, Jia Z, Liu F, Yang HY, Yu QQ, Wang YZ, Di X, Wang CY, Ho SH (2017) Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures. ACS Appl Mater Interfaces 9:36368–36376. https://doi.org/10.1021/acsami.7b08997

    Article  CAS  Google Scholar 

  47. Zhang WB, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25:2071–2076. https://doi.org/10.1002/adma.201204520

    Article  CAS  Google Scholar 

  48. Zhou WT, Li S, Liu Y, Xu ZZ, Wei SF, Wang GY, Lian JS, Jiang Q (2018) Dual superlyophobic copper foam with good durability and recyclability for high flux, high efficiency, and continuous oil-water separation. ACS Appl Mater Interfaces 10:9841–9848. https://doi.org/10.1021/acsami.7b19853

    Article  CAS  Google Scholar 

  49. Ge J, Ye YD, Yao HB, Zhu X, Wang X, Wu L, Wang JL, Ding H, Yong N, He LH, Yu SH (2014) Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. Angew Chem-Int Edit 53:3612–3616. https://doi.org/10.1002/anie.201310151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of China (2019YFE0120300) and the Southwest Petroleum University College Student Open Experiment Key Project (2020KSZ05025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Zhao or Yuntao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 539 kb)

Supplementary file2 (MP4 1528 kb)

Supplementary file3 (MP4 2526 kb)

Supplementary file4 (MP4 1139 kb)

Supplementary file5 (MP4 2997 kb)

Supplementary file6 (MP4 783 kb)

Supplementary file7 (MP4 3237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, X., Zhao, C. et al. Superhydrophobic and magnetic PS/Fe3O4 sponge for remote oil removal under magnetic driven, continuous oil collection, and oil/water emulsion separation. J Mater Sci 57, 336–350 (2022). https://doi.org/10.1007/s10853-021-06568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06568-9

Navigation