Skip to main content
Log in

Facile fabrication of compressible, magnetic and superhydrophobic poly(DVB-MMA) sponge for high-efficiency oil–water separation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oil spills cause serious environmental pollution and serious waste of resources, hydrophobic porous absorbent has been deemed as a simple, low-cost, efficient and environment-friendly in oil–water separation. In this paper, a facile emulsion template method was developed to fabricate an interconnected porous poly(DVB-MMA) sponge. A novel co-Pickering stabilization system of Span 80 and NiFe2O4 nanoparticles was applied to fabricate ultra-concentrated internal phase W/O emulsions. After further polymerization, the resulting sponge showed excellent adsorption selectivity due to superhydrophobicity and superlipophilicity. Also, the characterization results exhibited that the composite had superior thermal stability, low density, high porosity and flexible three-dimensional porous structure. Besides, waste PS plastic was introduced to enhance the structural integrity of composite, and the addition of NiFe2O4 provided the material with magnetic operability. High oil adsorption capacity (up to 44.3–101.0 g/g), high oil retention, fast adsorption rate and superior recyclability allowed the material to be used in the fields of oil–water separation and oil pollution treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Zhou Y, Zhang N, Zhou X, Hu YB, Hao GZ, Li XD, Jiang W (2019) Design of recyclable superhydrophobic PU@Fe3O4@PS sponge for removing oily contaminants from water. Ind Eng Chem Res 58:3249–3257. https://doi.org/10.1021/acs.iecr.8b04642

    Article  CAS  Google Scholar 

  2. Barroso-Solares S, Pinto J, Nannia G, Fragoulia D, Athanassiou A (2018) Enhanced oil removal from water in oil stable emulsions using electrospun nanocomposite fiber mats. RSC Adv 8:7641–7650. https://doi.org/10.1039/C7RA12646H

    Article  CAS  Google Scholar 

  3. Shi XM, Lan YR, Peng S, Wang YC, Ma J (2020) Green fabrication of a multifunctional sponge as an absorbent for highly efficient and ultrafast oil-water separation. ACS Omega 5:14232–14241. https://doi.org/10.1021/acsomega.9b03736

    Article  CAS  Google Scholar 

  4. Zhang T, Kong LY, Dai YT, Yue XJ, Rong J, Qiu FX, Pan JM (2017) Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem Eng J 309:7–14. https://doi.org/10.1016/j.cej.2016.08.085

    Article  CAS  Google Scholar 

  5. Qiang F, Hu L, Gong L, Zhao L, Li S, Tang L (2018) Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem Eng J 334:2154–2166. https://doi.org/10.1016/j.cej.2017.11.054

    Article  CAS  Google Scholar 

  6. Zhang JY, Chen RR, Liu JY, Liu Q, Yu J, Zhang HS, Jing XY, Zhang ML, Wang J (2019) Construction of ZnO@Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation. Surf Coat Tech 357:244–251. https://doi.org/10.1016/j.surfcoat.2018.09.042

    Article  CAS  Google Scholar 

  7. Mi HY, Jing X, Liu YJ, Li LW, Li H, Peng XF, Zhou HM (2019) Highly durable superhydrophobic polymer foams fabricated by extrusion and supercritical CO2 foaming for selective oil absorption. ACS Appl Mater Inter 11:7479–7487. https://doi.org/10.1021/acsami.8b21858

    Article  CAS  Google Scholar 

  8. Wang QD, Zhu LF, Gu L, Hu J, Gao XB (2018) Amphiphilic macroscopic foam based on natural tubular cellulose: a bi-functional adsorbent for oils and dyes. Sci Adv Mater 10:185–197. https://doi.org/10.1166/sam.2018.3222

    Article  CAS  Google Scholar 

  9. Zhang N, Zhou Y, Zhang YN, Jiang W, Wang TH, Fu J (2018) J Dual-templating synthesis of compressible and superhydrophobic spongy polystyrene for oil capture. Chem Eng J 354:245–253. https://doi.org/10.1016/j.cej.2018.07.184

    Article  CAS  Google Scholar 

  10. Zhao XX, Wang T, Li YY, Huang L, Handschuh-Wang S (2019) Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance. Polymers 11:948. https://doi.org/10.3390/polym11060948

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhang Q, Zhang RY, Liu SZ, Zhou Y (2019) A superhydrophobic and elastic melamine sponge for oil/water separation. New J Chem 43:6343–6349. https://doi.org/10.1039/C9NJ00447E

    Article  CAS  Google Scholar 

  12. Yang JB, Wang HC, Tao ZG, Liu XP, Wang ZW, Yue RR, Cui ZF (2019) 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism. Chem Eng J 359:149–158. https://doi.org/10.1016/j.cej.2018.11.125

    Article  CAS  Google Scholar 

  13. Xu ZQ, Wang JW, Li HJ, Wang Y (2019) Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation. Chem Eng J 370:1181–1187. https://doi.org/10.1016/j.cej.2019.03.288

    Article  CAS  Google Scholar 

  14. Zhang T, Yue XJ, Yang DY, Guo Q, Qiu FX, Li ZD (2018) Hybridization of Al2O3 microspheres and acrylic ester resins as a synergistic absorbent for selective oil and organic solvent absorption. Appl Organomet Chem 32:4244. https://doi.org/10.1002/aoc.4244

    Article  CAS  Google Scholar 

  15. Bu XH, Chen SW, Li DX, Liu JH, Hang ZS, Zhang ZW, Zhang L (2020) Flower-like hollow MoS2 microspheres/acrylic resin composites for enhanced oil contaminants removal from water. Sep Sci Technol 55:1227–1238. https://doi.org/10.1080/01496395.2019.1588319

    Article  CAS  Google Scholar 

  16. Bu XH, Lu Y, Chen SW, Li DX, Zhang ZW, Qian P (2019) Fabrication of porous carbon nitride foams/acrylic resin composites for efficient oil and organic solvents capture. Chem Eng J 355:299–308. https://doi.org/10.1016/j.cej.2018.08.088

    Article  CAS  Google Scholar 

  17. Tian F, Yang Y, Wang XL, An WL, Zhao X, Xu SM, Wang YZ (2019) From waste epoxy resins to efficient oil/water separation materials via a microwave assisted pore-forming strategy. Mater Horiz 6:1733–1739. https://doi.org/10.1039/C9MH00541B

    Article  CAS  Google Scholar 

  18. Yuan DS, Zhang T, Guo Q, Qiu FX, Yang DY, Ou ZP (2018) Superhydrophobic hierarchical biomass carbon aerogel assembled with TiO2 nanorods for selective immiscible oil/water mixture and emulsion separation. Ind Eng Chem Res 57:14758–14766. https://doi.org/10.1021/acs.iecr.8b03661

    Article  CAS  Google Scholar 

  19. Kang WW, Cui Y, Qin L, Yang YZ, Zhao ZB, Wang XZ, Liu XG (2020) A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J Hazard Mater 392:122499. https://doi.org/10.1016/j.jhazmat.2020.122499

    Article  CAS  Google Scholar 

  20. Wang LB, Guo RL, Ren JF, Song GM, Chen GX, Zhou Z, Li QF (2020) Preparation of superhydrophobic and flexible polysiloxane aerogel. Ceram Int 46:10362–10369. https://doi.org/10.1016/j.ceramint.2020.01.033

    Article  CAS  Google Scholar 

  21. Zhu ZD, Fu SY, Lucia LA (2019) A fiber-aligned thermal-managed wood-based superhydrophobic aerogel for efficient oil recovery. ACS Sustain Chem Eng 7:16428–16439. https://doi.org/10.1021/acssuschemeng.9b03544

    Article  CAS  Google Scholar 

  22. Singh AK, Singh JK (2019) An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator. Prog Org Coat 131:301–310. https://doi.org/10.1016/j.porgcoat.2019.02.025

    Article  CAS  Google Scholar 

  23. Achagri G, Essamlali Y, Amadine O, Majdoub M, Chakira A, Zahouily M (2020) Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets. RSC Adv 10:24941–24950. https://doi.org/10.1039/D0RA02655G

    Article  CAS  Google Scholar 

  24. Liu HF, Wang Z, Sun CJ (2020) Scalable and rapid preparation of Janus fabric by trans-printing method for efficient oil/water emulsion separation. J Disper Sci Technol 41:1236–1245. https://doi.org/10.1080/01932691.2019.1615934

    Article  CAS  Google Scholar 

  25. Manickam M, Pichaimani P, Arumugam H, Muthukaruppan A (2019) Synthesis of nontoxic pyrazolidine-based benzoxazine-coated cotton fabric for oil-water separation. Ind Eng Chem Res 58:21419–21430. https://doi.org/10.1021/acs.iecr.9b03440

    Article  CAS  Google Scholar 

  26. Zhang YP, Yang JH, Li LL, Cui CX, Li Y, Liu SQ, Zhou XM, Qu LB (2019) Facile fabrication of superhydrophobic copper-foam and electrospinning polystyrene fiber for combinational oil-water separation. Polymers 11:97. https://doi.org/10.3390/polym11010097

    Article  CAS  Google Scholar 

  27. Ma Q, Li GD, Liu XY, Wang Z, Song Z, Wang HT (2018) Zeolitic imidazolate framework-8 film coated stainless steel meshes for highly efficient oil/water separation. Chem Commun 54:5530–5533. https://doi.org/10.1039/c8cc01515e

    Article  CAS  Google Scholar 

  28. Wang Q, Yu MG, Chen GX, Chen QF, Tian JF (2017) Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation. J Mater Sci 52:2549–2559. https://doi.org/10.1007/s10853-016-0548-6

    Article  CAS  Google Scholar 

  29. Yu MG, Wang Q, Zhang M, Deng QJ, Chen DC (2017) Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil-water separation. RSC Adv 7:39471–39479. https://doi.org/10.1039/C7RA07250C

    Article  CAS  Google Scholar 

  30. Wu H, Wu LH, Lu SC, Lin XX, Xiao H, Ouyang XH, Cao SL, Chen LH, Huang LL (2018) Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation. Carbohydr Polym 181:419–425. https://doi.org/10.1016/j.carbpol.2017.08.078

    Article  CAS  Google Scholar 

  31. Roy S, Zhai LD, Hai LV, Kim JW, Park JH, Kim HC, Kim J (2018) One-step nanocellulose coating converts tissue paper into an efficient separation membrane. Cellulose 25:4871–4886. https://doi.org/10.1007/s10570-018-1945-6

    Article  CAS  Google Scholar 

  32. Bai WB, Guan MQ, Lai NS, Yao RJ, Xu YL, Lin JH (2018) Superhydrophobic paper from conjugated poly(p-phenylene)s: self-assembly and separation of oil/water mixture. Mater Chem Phys 216:230–236. https://doi.org/10.1016/j.matchemphys.2018.06.014

    Article  CAS  Google Scholar 

  33. Dupont H, Fouché C, Dourges MA, Schmitt V, Héroguez V (2020) Polymerization of cellulose nanocrystals-based Pickering HIPE towards green porous materials. Carbohyd Polym 243:116411. https://doi.org/10.1016/j.carbpol.2020.116411

    Article  CAS  Google Scholar 

  34. Jurjevec S, Žagar E, Kovačič S (2020) Functional macroporous amphoteric polyelectrolyte monoliths with tunable structures and properties through emulsion-templated synthesis. J Colloid Interf Sci 575:480–488. https://doi.org/10.1016/j.jcis.2020.05.016

    Article  CAS  Google Scholar 

  35. Onder OC, Utroša P, Caserman S, Podobnik M, Tušek-Žnidarič M, Grdadolnik J, Kovačič S, Žagar E, Pahovnik D (2020) Emulsion-templated synthetic polypeptide scaffolds prepared by ring-opening polymerization of N-carboxyanhydrides. Polym Chem 11:4260–4270. https://doi.org/10.1039/d0py00387e

    Article  CAS  Google Scholar 

  36. Zhang N, Zhong ST, Zhou X, Jiang W, Wang TH, Fu JJ (2016) Superhydrophobic P(St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery. Chem Eng J 298:117–124. https://doi.org/10.1016/j.cej.2016.03.151

    Article  CAS  Google Scholar 

  37. Zhang N, Zhong ST, Chen T, Zhou Y, Jiang W (2017) Emulsion-derived hierarchically porous polystyrene solid foam for oil removal from aqueous environment. RSC Adv 7:22946–22953. https://doi.org/10.1039/C7RA02953E

    Article  CAS  Google Scholar 

  38. Zhang N, Jiang W, Wang TH, Gu JJ, Zhong ST, Zhou S, Xie T, Fu JJ (2015) Facile preparation of magnetic poly(styrene-divinylbenzene) foam and its application as an oil absorbent. Ind Eng Chem Res 54:11033–11039. https://doi.org/10.1021/acs.iecr.5b01847

    Article  CAS  Google Scholar 

  39. Yu CM, Zhuang XH, Zeng SW, Dong QX, Jing ZX, Hong PZ, Li Y (2019) Superhydrophobic foam prepared from high internal phase emulsion templates stabilised by oyster shell powder for oil-water separation. RSC Adv 9:17543–17550. https://doi.org/10.1039/C9RA01258C

    Article  CAS  Google Scholar 

  40. Yu CM, Lin WY, Jiang JE, Jing ZX, Hong PZ, Li Y (2019) Preparation of a porous superhydrophobic foam from waste plastic and its application for oil spill cleanup. RSC Adv 9:37759–37767. https://doi.org/10.1039/C9RA06848A

    Article  CAS  Google Scholar 

  41. Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250. https://doi.org/10.1080/07388550500346359

    Article  CAS  Google Scholar 

  42. Müller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95. https://doi.org/10.1016/S0168-1656(00)00407-7

    Article  Google Scholar 

  43. Okan M, Aydin HM, Barsbay M (2019) Current approaches to waste polymer utilization and minimization: a review. J Chem Technol Biot 94:8–21. https://doi.org/10.1002/jctb.5778

    Article  CAS  Google Scholar 

  44. Ahmed S, Ahmad Z (2020) Development of hexagonal nanoscale nickel ferrite for the removal of organic pollutant via Photo-Fenton type catalytic oxidation process. Environ Nanotechnol Monitor Manage 14:10321. https://doi.org/10.1016/j.enmm.2020.100321

    Article  Google Scholar 

  45. Luo ZR, Li DD, Huang LH, Tan ST, Huang JW (2020) Flexible and superhydrophobic aerogel based on an interpenetrating network of konjac glucomannan and reduced graphene oxide for efficient water-oil separation. J Mater Sci 55:12884–12896. https://doi.org/10.1007/s10853-020-04901-2

    Article  CAS  Google Scholar 

  46. Birajdar DS, Devatwal UN, Jadhav KM (2002) X-ray, IR and bulk magnetic properties of Cu1+xMnxFe2-2xO4 ferrite system. J Mater Sci 37:1443–1448. https://doi.org/10.1023/A:1014505620254

    Article  CAS  Google Scholar 

  47. Li N, Yue QY, Gao BY, Xu X, Su RD, Yu BJ (2019) One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J Clean Prod 207:764–771. https://doi.org/10.1016/j.jclepro.2018.10.038

    Article  CAS  Google Scholar 

  48. Silverstein MS, Tai HW, Sergienko AY, Lumelsky Y, Pavlovsky S (2005) PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors. Polymer 46:6682–6694. https://doi.org/10.1016/j.polymer.2005.05.022

    Article  CAS  Google Scholar 

  49. Kong LT, Ma L, Jin HB, Hou J, He GX, Zhang RY (2019) Synthesis of a novel oil-absorption resin and optimization of its performance parameters using response surface design. Polym Advan Technol 30:1441–1452. https://doi.org/10.1002/pat.4576

    Article  CAS  Google Scholar 

  50. Ma LB, Luo XG, Cai N, Xue YN, Zhu S, Fu Z, Yu FQ (2014) Facile fabrication of hierarchical porous resins via high internal phase emulsion and polymeric porogen. Appl Surf Sci 305:186–193. https://doi.org/10.1016/j.apsusc.2014.03.036

    Article  CAS  Google Scholar 

  51. Cao CF, Zhang GD, Zhao L, Gong LX, Gao JF, Jiang JX, Tang LC, Mai YW (2019) Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Compos Sci Technol 171:162–170. https://doi.org/10.1016/j.compscitech.2018.12.014

    Article  CAS  Google Scholar 

  52. Lv XS, Tian DH, Peng YY, Li JX, Jiang GM (2019) Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Appl Surf Sci 466:937–945. https://doi.org/10.1016/j.apsusc.2018.10.110

    Article  CAS  Google Scholar 

  53. Zhang XM, Fu F, Gao XM, Hou XF (2019) Magnetically driven superhydrophobic polyurethane sponge for high efficiency oil/water mixtures separation. J Bionic Eng 16:38–46. https://doi.org/10.1007/s42235-019-0004-9

    Article  Google Scholar 

Download references

Funding

This research was funded by [Colleges Innovation Project of Guangdong Province], grant number [2017KQNCX093], [Science and Technology Plan Project of Zhanjiang City], grant number [2018A01042], [College Student Innovation and Entrepreneurship Training Program of Guangdong Ocean University], grant number [CXXL2018108, CXXL2019300, CXXL2020294, CXXL2020301], [Guangdong Climbing Project], grant number [pdjh2020a0271], and [Innovation University Program of Guangdong Ocean University], grant number [Q18304]. The APC was funded by [Scientific Research Start-up Funds of Guangdong Ocean University], grant number [R18018].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanming Yu or Yong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Jiang, J., Liu, Y. et al. Facile fabrication of compressible, magnetic and superhydrophobic poly(DVB-MMA) sponge for high-efficiency oil–water separation. J Mater Sci 56, 3111–3126 (2021). https://doi.org/10.1007/s10853-020-05471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05471-z

Navigation