Skip to main content
Log in

Cold spray deposition of metallic coatings on polymers: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cold spray deposition, which can be framed in the wider family of additive manufacturing, is a manufacturing technique that is able to produce coatings on diverse types of substrates through the deposition of feedstock powder. As a low-temperature process, cold spray represents a potential solution for the metallization of temperature-sensitive materials, i.e. polymers and polymer matrix composites. The study of the cold spray technology for the metallization of polymers is still in its early stage, and the deposition mechanisms of metals on polymer-based materials are not thoroughly understood yet. On these premises, a review on this topic is needed to systematically depict the actual state of the art and to provide a reliable and well-organized overview discussing all the theories arisen in these years. In summary, this review aims: i) to collect all the available literature and enucleate the most discussed and interesting points (the most prevailing theories regarding the bonding mechanisms, the influence of the different process parameters and the main characteristics of cold-sprayed coating), providing a reliable and well-organized state of the art; ii) to define the open questions and to delineate the directions of future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Brighenti R, Cosma MP, Marsavina L et al (2021) Laser-based additively manufactured polymers: a review on processes and mechanical models. J. Mater. Sci. 56(2):961–98

    Article  CAS  Google Scholar 

  2. Jeandin M, Delloro F, Léger PE et al (2018) Cold spray under the banner of thermal spray in the whirlwind of additive manufacturing. Surf Eng. https://doi.org/10.1080/02670844.2018.1471188

    Article  Google Scholar 

  3. Kelkar M, Heberlein J (2002) Wire-arc spray modeling. Plasma Chem Plasma Process. https://doi.org/10.1023/A:1012924714157

    Article  Google Scholar 

  4. Wu B, Pan Z, Ding D et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J. Manuf. Process. 35:127–139

    Article  Google Scholar 

  5. Gapsari F, Hidayati NA, Setyarini PH et al (2021) Hydroxyapatite coating on stainless steel 316l using flame spray technique. Int J Eng Trans B Appl. https://doi.org/10.5829/IJE.2021.34.02B.22

    Article  Google Scholar 

  6. Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol. https://doi.org/10.1361/105996302770348682

    Article  Google Scholar 

  7. Raoelison RN, Xie Y, Sapanathan T et al (2018) Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date. Addit. Manuf. 19:134–59

    Google Scholar 

  8. Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater. https://doi.org/10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  9. Palodhi L, Singh H (2020) On the dependence of critical velocity on the material properties during cold spray process. J Therm Spray Technol. https://doi.org/10.1007/s11666-020-01105-7

    Article  Google Scholar 

  10. Guo H, Zhao X, An Y et al (2021) Fabrication and effect of heat treatment on the microstructure and tribology properties of HVOF-sprayed CoMoCrSi coating. J Mater Sci. https://doi.org/10.1007/s10853-021-05986-z

    Article  Google Scholar 

  11. Viscusi A, Astarita A, Della G R, Rubino F (2019) A perspective review on the bonding mechanisms in cold gas dynamic spray. Surf. Eng. 35(9):743–71

    Article  CAS  Google Scholar 

  12. Hassani-Gangaraj M, Veysset D, Champagne VK et al (2018) Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Mater. https://doi.org/10.1016/j.actamat.2018.07.065

    Article  Google Scholar 

  13. Dong G, Tang Y, Li D, Zhao YF (2020) Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101116

    Article  Google Scholar 

  14. Zeng G, Zahiri SH, Gulizia S et al (2021) Hybrid additive manufacturing of biocompatible Ti–Ta composite structures for biomedical applications. J Mater Res. https://doi.org/10.1557/s43578-021-00190-w

    Article  Google Scholar 

  15. Blindheim J, Grong Ø, Welo T, Steinert M (2020) On the mechanical integrity of AA6082 3D structures deposited by hybrid metal extrusion & bonding additive manufacturing. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2020.116684

    Article  Google Scholar 

  16. Li F, Chen S, Shi J et al (2017) Evaluation and optimization of a hybrid manufacturing process combining wire arc additive manufacturing with milling for the fabrication of stiffened panels. Appl Sci. https://doi.org/10.3390/app7121233

    Article  Google Scholar 

  17. Viscusi A, Perna AS, Astarita A et al (2019) Experimental study of cold sprayed metallic coatings on thermoplastic matrix composites. Key. Eng Mater. 813:68–73

    Article  Google Scholar 

  18. Astarita A, Boccarusso L, Durante M et al (2018) Study of the production of a metallic coating on natural fiber composite through the cold spray technique. J Mater Eng Perform. https://doi.org/10.1007/s11665-018-3147-7

    Article  Google Scholar 

  19. Bortolussi V, Borit F, Chesnaud A, et al (2016) Cold spray of metal-polymer composite coatings onto Carbon Fiber-Reinforced Polymer (CFRP). In: Proceedings of the International Thermal Spray Conference

  20. Miyazaki N (2016) Solid particle erosion of composite materials: a critical review. J. Compos. Mater. 50(3):3175–217

    Article  CAS  Google Scholar 

  21. Gardon M, Melero H, Garcia-Giralt N et al (2014) Enhancing the bioactivity of polymeric implants by means of cold gas spray coatings. J Biomed Mater Res - Part B Appl Biomater. https://doi.org/10.1002/jbm.b.33134

    Article  Google Scholar 

  22. Joshi N (2019) Advanced coatings by thermal spray processes. Technologies. https://doi.org/10.3390/technologies7040079

    Article  Google Scholar 

  23. Campbell JP, Astarita A, Viscusi A, Saha GC (2020) Investigation of strain-hardening characteristics of cold-sprayed Al–Al2O3 coatings: a combined nanoindentation and expanding cavity models approach. Surf Eng. https://doi.org/10.1080/02670844.2019.1620438

    Article  Google Scholar 

  24. Viscusi A, Ammendola P, Astarita A et al (2016) Aluminum foam made via a new method based on cold gas dynamic sprayed powders mixed through sound assisted fluidization technique. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2015.12.030

    Article  Google Scholar 

  25. Bhatnagar A (2016) Lightweight Ballistic Composites: military and law-enforcement applications, 2nd edn. Woodhead Publishing, UK

    Google Scholar 

  26. Hueber C, Fischer G, Schwingshandl N, Schledjewski R (2019) Production planning optimisation for composite aerospace manufacturing. Int J Prod Res. https://doi.org/10.1080/00207543.2018.1554918

    Article  Google Scholar 

  27. Zhang H, Huang T, Jiang Q et al (2021) Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. J. Mater. Sci. 29:1–24

    Google Scholar 

  28. Verma P, Bansala T, Chauhan SS et al (2021) Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites. J Mater Sci. https://doi.org/10.1007/s10853-021-05985-0

    Article  Google Scholar 

  29. Yao Y, Jin S, Zou H et al (2021) Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 18:1–32

    Google Scholar 

  30. Lin T, Yu H, Wang L et al (2021) A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J. Mater. Sci. 56(9):5449–78

    Article  CAS  Google Scholar 

  31. Senis EC, Golosnoy IO, Dulieu-Barton JM, Thomsen OT (2019) Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxide. J Mater Sci. https://doi.org/10.1007/s10853-019-03522-8

    Article  Google Scholar 

  32. Chen X, Smorgonskiy A, Li J et al (2019) Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber composites. J Mater Sci. https://doi.org/10.1007/s10853-018-3127-1

    Article  Google Scholar 

  33. Su X, Li X, Ong CYA et al (2019) Metallization of 3D printed polymers and their application as a fully functional water-splitting system. Adv Sci. https://doi.org/10.1002/advs.201801670

    Article  Google Scholar 

  34. Jin Z, Shen YA, Huo F et al (2021) Electromigration behavior of silver thin film fabricated by electron-beam physical vapor deposition. J Mater Sci. https://doi.org/10.1007/s10853-021-05862-w

    Article  Google Scholar 

  35. Cihanoğlu G, Ebil Ö (2021) Robust fluorinated siloxane copolymers via initiated chemical vapor deposition for corrosion protection. J Mater Sci. https://doi.org/10.1007/s10853-021-06060-4

    Article  Google Scholar 

  36. Miquelot A, Youssef L, Villeneuve-Faure C et al (2021) In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films. J Mater Sci. https://doi.org/10.1007/s10853-021-05955-6

    Article  Google Scholar 

  37. Olivera S, Muralidhara HB, Venkatesh K et al (2016) Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J. Mater. Sci. 51(8):3657–74. https://doi.org/10.1007/s10853-015-9668-7

    Article  CAS  Google Scholar 

  38. Corni I, Chater RJ, Boccaccini AR, Ryan MP (2012) Electro co-deposition of Ni-Al 2O 3 composite coatings. J Mater Sci. https://doi.org/10.1007/s10853-012-6381-7

    Article  Google Scholar 

  39. Vergason G (2019) Advances in decorative PVD chromium coatings for polymer substrates. In: Annual Technical Conference - ANTEC, Conference Proceedings

  40. Kumar S, Chavan NM, Srinivasa Rao D (2019) Cold spraying: a low temperature variant of thermal spray techniques to deposit metallic materials. Front. Adv. Mater. Res. 1(1):25–27. https://doi.org/10.34256/famr1914

    Article  Google Scholar 

  41. Prashar G, Vasudev H (2021) A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges. J. Clean. Prod. 23:127606

    Article  Google Scholar 

  42. Assadi H, Kreye H, Gärtner F, Klassen T (2016) Cold spraying – A materials perspective. Acta. Mater. 116:382–407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  CAS  Google Scholar 

  43. Silvello A, Cavaliere PD, Albaladejo V et al (2020) Powder properties and processing conditions affecting cold spray deposition. Coatings. https://doi.org/10.3390/coatings10020091

    Article  Google Scholar 

  44. Yin S, Cavaliere P, Aldwell B et al (2018) Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf 21:628–650

    CAS  Google Scholar 

  45. Perna AS, Astarita A, Borrelli D et al (2021) Fused filament fabrication of ONYX-based composites coated with aluminum powders: a preliminary analysis on feasibility and characterization. ESAFORM 2021. https://doi.org/10.25518/esaform21.4017

    Article  Google Scholar 

  46. Viscusi A, Astarita A, Borrelli D et al (2021) On the influence of manufacturing strategy of 3d-printed polymer substrates on cold spray deposition. ESAFORM 2021. https://doi.org/10.25518/esaform21.3003

    Article  Google Scholar 

  47. Della Gatta R, Astarita A, Borrelli D et al (2021) manufacturing of aluminum coating on 3d-printed onyx with cold spray technology. ESAFORM 2021. https://doi.org/10.25518/esaform21.858

    Article  Google Scholar 

  48. Parmar H, Gambardella A, Perna AS et al (2021) Manufacturing and metallization of hybrid thermoplastic-thermoset matrix composites. ESAFORM 2021. https://doi.org/10.25518/esaform21.2727

    Article  Google Scholar 

  49. Liberati AC, Che H, Vo P, Yue S (2021) Influence of secondary component hardness when cold spraying mixed metal powders on carbon fiber reinforced polymers. J Therm Spray Technol. https://doi.org/10.1007/s11666-021-01197-9

    Article  Google Scholar 

  50. Perna AS, Astarita A, Carlone P et al (2021) Characterization of cold-spray coatings on fiber-reinforced polymers through nanoindentation tests. Metals (Basel). https://doi.org/10.3390/met11020331

    Article  Google Scholar 

  51. Tsai JT, Akin S, Zhou F et al (2021) Establishing a cold spray particle deposition window on polymer substrate. J. Therm. Spray Technol. 18:1–2

    CAS  Google Scholar 

  52. Della Gatta R, Viscusi A, Perna AS et al (2021) Cold spray process for the production of AlSi10Mg coatings on glass fibers reinforced polymers. Mater Manuf Process. https://doi.org/10.1080/10426914.2020.1813895

    Article  Google Scholar 

  53. Feng P, Rokni MR, Nutt SR (2021) Depositing aluminum onto PEKK composites by cold spray. J Therm Spray Technol. https://doi.org/10.1007/s11666-020-01125-3

    Article  Google Scholar 

  54. Della Gatta R, Viscusi A, Perna AS et al (2021) Feasibility of steel powder deposition on composites through cold spray. Mater Manuf Process. https://doi.org/10.1080/10426914.2020.1832693

    Article  Google Scholar 

  55. Fallah P, Rajagopalan S, McDonald A, Yue S (2020) Development of hybrid metallic coatings on carbon fiber-reinforced polymers (CFRPs) by cold spray deposition of copper-assisted copper electroplating process. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2020.126231

    Article  Google Scholar 

  56. Papa I, Russo P, Astarita A et al (2020) Impact behaviour of a novel composite structure made of a polymer reinforced composite with a 3D printed metallic coating. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112346

    Article  Google Scholar 

  57. Viscusi A, Antonucci V, Carrino L et al (2020) Manufacturing of an innovative composite structure: design, manufacturing and impact behaviour. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112637

    Article  Google Scholar 

  58. Rubino F, Tucci F, Esperto V, et al (2020) Metallization of fiber reinforced composite by surface functionalization and cold spray deposition. In: Procedia Manufacturing

  59. Bortolussi V, Figliuzzi B, Willot F et al (2020) Electrical conductivity of metal-polymer cold spray composite coatings onto carbon fiber-reinforced polymer. J Therm Spray Technol. https://doi.org/10.1007/s11666-020-00999-7

    Article  Google Scholar 

  60. Viscusi A, Durante M, Astarita A et al (2020) Experimental evaluation of metallic coating on polymer by cold spray. Procedia Manufacturing 47:761–765

    Article  Google Scholar 

  61. Liberati AC, Che H, Vo P, Yue S (2020) Observation of an indirect deposition effect while cold spraying Sn-Al mixed powders onto carbon fiber reinforced polymers. J Therm Spray Technol. https://doi.org/10.1007/s11666-019-00967-w

    Article  Google Scholar 

  62. Rokni MR, Feng P, Widener CA, Nutt SR (2019) Depositing Al-based metallic coatings onto polymer substrates by cold spray. J Therm Spray Technol. https://doi.org/10.1007/s11666-019-00911-y

    Article  Google Scholar 

  63. Perna AS, Viscusi A, Astarita A et al (2019) Manufacturing of a metal matrix composite coating on a polymer matrix composite through cold gas dynamic spray technique. J Mater Eng Perform. https://doi.org/10.1007/s11665-019-03914-6

    Article  Google Scholar 

  64. Gillet V, Aubignat E, Costil S et al (2019) Development of low pressure cold sprayed copper coatings on carbon fiber reinforced polymer (CFRP). Surf. Coatings. Technol. 364:306–316. https://doi.org/10.1016/j.surfcoat.2019.01.011

    Article  CAS  Google Scholar 

  65. Che H, Vo P, Yue S (2019) Investigation of cold spray on polymers by single particle impact experiments. J. Therm. Spray. Technol. 28:135–143. https://doi.org/10.1007/s11666-018-0801-4

    Article  Google Scholar 

  66. Perna AS, Viscusi A, Astarita A et al (2019) Experimental study of functionalized polymer matrix composite with multi-material metal coatings produced by means of cold spray technology. Key. Eng. Mater. 813:267–272

    Article  Google Scholar 

  67. Chu X, Che H, Yue S (2019) Understanding the cold spray deposition characteristics of mixed metal powders. MRS Adv. https://doi.org/10.1557/adv.2019.418

    Article  Google Scholar 

  68. Papa I, Russo P, Astarita A et al (2019) Influence of the metallic cold spray deposition on the low-velocity impact behaviour of composite laminates. Key. Eng. Mater. 813:376–380

    Article  Google Scholar 

  69. Lomonaco P, Weiller S, Feki I et al (2019) Cold spray technology to promote conductivity of short carbon fiber reinforced polyether-ether-ketone (PEEK). Key. Eng. Mater. 813:459–464

    Article  Google Scholar 

  70. Che H, Gagné M, Rajesh PSM et al (2018) Metallization of carbon fiber reinforced polymers for lightning strike protection. J Mater Eng Perform. https://doi.org/10.1007/s11665-018-3609-y

    Article  Google Scholar 

  71. Chen C, Xie X, Xie Y et al (2018) Metallization of polyether ether ketone (PEEK) by copper coating via cold spray. Surf. Coatings. Technol. 342:209–219. https://doi.org/10.1016/j.surfcoat.2018.02.087

    Article  CAS  Google Scholar 

  72. Stenson C, McDonnell KA, Yin S et al (2018) Cold spray deposition to prevent fouling of polymer surfaces. Surf Eng. https://doi.org/10.1080/02670844.2016.1229833

    Article  Google Scholar 

  73. Małachowska A, Winnicki M, Stachowicz M, Korzeniowski M (2018) Metallisation of polycarbonates using a low pressure cold spray method. Surf. Eng. 34:251–258. https://doi.org/10.1080/02670844.2016.1277843

    Article  CAS  Google Scholar 

  74. Dong S, Liao H (2018) Substrate pre-treatment by dry-ice blasting and cold spraying of titanium. Surf Eng. https://doi.org/10.1080/02670844.2016.1210894

    Article  Google Scholar 

  75. Che H, Liberati A, Vo P, Yue S (2018) Cold spray of mixed sn-zn and sn-al powders on carbon fiber reinforced polymers. Mater. Sci. Forum 941:1892–1897

    Article  Google Scholar 

  76. Che H, Chu X, Vo P, Yue S (2018) Metallization of various polymers by cold spray. J Therm Spray Technol. https://doi.org/10.1007/s11666-017-0663-1

    Article  Google Scholar 

  77. Bortolussi V, Figliuzzi B, Willot F et al (2018) Morphological modeling of cold spray coatings. Image Anal Stereol. https://doi.org/10.5566/ias.1894

    Article  Google Scholar 

  78. Che H, Chu X, Vo P, Yue S (2017) Cold spray of mixed metal powders on carbon fibre reinforced polymers. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2017.09.052

    Article  Google Scholar 

  79. Kromer R, Danlos Y, Aubignat E et al (2017) Coating deposition and adhesion enhancements by laser surface texturing—metallic particles on different classes of substrates in cold spraying process. Mater. Manuf. Process. 32(14):1642–52

    Article  CAS  Google Scholar 

  80. Małachowska A, Winnicki M, Konat Ł et al (2017) Possibility of spraying of copper coatings on polyamide 6 with low pressure cold spray method. Surf. Coatings. Technol. 318:82–89. https://doi.org/10.1016/j.surfcoat.2017.02.001

    Article  CAS  Google Scholar 

  81. Che H, Vo P, Yue S (2017) Metallization of carbon fibre reinforced polymers by cold spray. Surf. Coatings. Technol. 313:236–247. https://doi.org/10.1016/j.surfcoat.2017.01.083

    Article  CAS  Google Scholar 

  82. Lupoi R, Stenson C, McDonnell KA et al (2016) Antifouling coatings made with cold spray onto polymers: process characterization. CIRP Ann – Manuf. Technol. 65:545–548. https://doi.org/10.1016/j.cirp.2016.04.015

    Article  Google Scholar 

  83. Ye H, Wang J (2014) Preparation of aluminum coating on Lexan by cold spray. Mater Lett. https://doi.org/10.1016/j.matlet.2014.08.119

    Article  Google Scholar 

  84. Vucko MJ, King PC, Poole AJ et al (2014) Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles. Biofouling. https://doi.org/10.1080/08927014.2014.906584

    Article  Google Scholar 

  85. Ganesan A, Yamada M, Fukumoto M (2013) Cold spray coating deposition mechanism on the thermoplastic and thermosetting polymer substrates. J. Therm. Spray. Techn. 22(8):1275–1282. https://doi.org/10.1007/s11666-013-9984-x

    Article  CAS  Google Scholar 

  86. Gardon M, Latorre A, Torrell M et al (2013) Cold gas spray titanium coatings onto a biocompatible polymer. Mater Lett. https://doi.org/10.1016/j.matlet.2013.04.115

    Article  Google Scholar 

  87. King PC, Poole AJ, Horne S et al (2013) Embedment of copper particles into polymers by cold spray. Surf. Coatings. Technol. 216:60–67. https://doi.org/10.1016/j.surfcoat.2012.11.023

    Article  CAS  Google Scholar 

  88. Vucko MJ, King PC, Poole AJ et al (2013) Polyurethane seismic streamer skins: an application of cold spray metal embedment. Biofouling. https://doi.org/10.1080/08927014.2012.741682

    Article  Google Scholar 

  89. Ganesan A, Affi J, Yamada M, Fukumoto M (2012) Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate. Surf. Coatings. Technol. 207:262–269. https://doi.org/10.1016/j.surfcoat.2012.06.086

    Article  CAS  Google Scholar 

  90. Vucko MJ, King PC, Poole AJ et al (2012) Cold spray metal embedment: an innovative antifouling technology. Biofouling. https://doi.org/10.1080/08927014.2012.670849

    Article  Google Scholar 

  91. Giraud D, Borit F, Guipont V, et al (2012) Metallization of a polymer using cold spray: Application to aluminum coating of polyamide 66. In: Proceedings of the International Thermal Spray Conference

  92. Affi J, Okazaki H, Yamada M, Fukumoto M (2011) Fabrication of aluminum coating onto CFRP substrate by cold spray. Mater Trans. https://doi.org/10.2320/matertrans.T-M2011807

    Article  Google Scholar 

  93. Zhou XL, Chen AF, Liu JC et al (2011) Preparation of metallic coatings on polymer matrix composites by cold spray. Surf. Coatings. Technol. 206:132–136. https://doi.org/10.1016/j.surfcoat.2011.07.005

    Article  CAS  Google Scholar 

  94. Lupoi R, O’Neill W (2010) Deposition of metallic coatings on polymer surfaces using cold spray. Surf. Coatings. Technol. 205:2167–2173. https://doi.org/10.1016/j.surfcoat.2010.08.128

    Article  CAS  Google Scholar 

  95. Sturgeon A, Dunn B, Celotto S, O’Neill B (2006) Cold sprayed coatings for polymer composite substrates. In: European Space Agency, (Special Publication) ESA SP

  96. Zhang D, Shipway PH, McCartney DG (2005) Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation. J Therm Spray Technol. https://doi.org/10.1361/10599630522666

    Article  Google Scholar 

  97. Qi X, Wu X, Gong Y et al (2021) Interlaminar mechanical properties of nano- and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. J Mater Sci. https://doi.org/10.1007/s10853-021-06003-z

    Article  Google Scholar 

  98. Cai Y, An X, Zou Q et al (2021) Mechanical properties and failure mechanisms of composite laminates with classical fabric stacking patterns. J Mater Sci. https://doi.org/10.1007/s10853-021-06073-z

    Article  Google Scholar 

  99. Khraponichev K, Incerti D, Carolan D, Fergusson A (2021) Effect of rapid manufacturing on the performance of carbon fibre epoxy polymers. J Mater Sci. https://doi.org/10.1007/s10853-020-05675-3

    Article  Google Scholar 

  100. Huang Z, Nie X, Xia Y (2004) Effect of strain rate and temperature on the dynamic tensile properties of GFRP. J Mater Sci. https://doi.org/10.1023/B:JMSC.0000026956.45427.68

    Article  Google Scholar 

  101. Walker M (2018) Microstructure and bonding mechanisms in cold spray coatings. Mater. Sci. Technol. 34(17):2057–2077

    Article  CAS  Google Scholar 

  102. Viscusi A, Bruno M, Esposito L, Testa G (2020) An experimental/numerical study of bonding mechanism in cold spray technology for metals. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06060-9

    Article  Google Scholar 

  103. Chen C, Xie Y, Huang R et al (2018) On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray. Mater Lett. https://doi.org/10.1016/j.matlet.2017.09.024

    Article  Google Scholar 

  104. Grujicic M, Zhao CL, DeRosset WS, Helfritch D (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Des. https://doi.org/10.1016/j.matdes.2004.03.008

    Article  Google Scholar 

  105. Tiamiyu AA, Sun Y, Nelson KA, Schuh CA (2021) Site-specific study of jetting, bonding, and local deformation during high-velocity metallic microparticle impact. Acta Mater. https://doi.org/10.1016/j.actamat.2020.10.057

    Article  Google Scholar 

  106. Liu H, Liu J, Ding Y et al (2020) The behaviour of thermoplastic and thermoset carbon fibre composites subjected to low-velocity and high-velocity impact. J Mater Sci. https://doi.org/10.1007/s10853-020-05133-0

    Article  Google Scholar 

  107. Bîrca A, Gherasim O, Grumezescu V, Grumezescu AM (2019) Introduction in thermoplastic and thermosetting polymers. In: Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Elsevier, USA

  108. Sun C, Zhou X, Xie C, Liu B (2020) Investigating hard/soft combinations of cold spraying by Eulerian approach. Surf Eng. https://doi.org/10.1080/02670844.2019.1710036

    Article  Google Scholar 

  109. Wu G, Xie P, Yang H et al (2021) A review of thermoplastic polymer foams for functional applications. J. Mater. Sci. 6:1–26

    CAS  Google Scholar 

  110. Bae G, Xiong Y, Kumar S et al (2008) General aspects of interface bonding in kinetic sprayed coatings. Acta. Mater. 56:4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003

    Article  CAS  Google Scholar 

  111. Zhang Y, Xu X (2020) Machine learning glass transition temperature of polymers. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05055

    Article  Google Scholar 

  112. Qiao Y, Salviato M (2019) Strength and cohesive behavior of thermoset polymers at the microscale: a size-effect study. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2019.03.033

    Article  Google Scholar 

  113. Che H, Vo P, Yue S (2017) Metallization of various polymers by cold spray. In: Proceedings of the International Thermal Spray Conference. pp 98–103

  114. Raletz F, Vardelle M, Ezo’o G (2006) Critical particle velocity under cold spray conditions. Surf. Coatings. Technol. 201(5):1942–1947. https://doi.org/10.1016/j.surfcoat.2006.04.061

    Article  CAS  Google Scholar 

  115. Canales H, Cano IG, Dosta S (2020) Window of deposition description and prediction of deposition efficiency via machine learning techniques in cold spraying. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2020.126143

    Article  Google Scholar 

  116. Yin S, Suo X, Su J et al (2014) Effects of substrate hardness and spray angle on the deposition behavior of cold-sprayed ti particles. J. Therm. Spray. Technol. 23(1–2):76–83

    Article  CAS  Google Scholar 

  117. Xie Y, Chen C, Planche MP et al (2019) Strengthened peening effect on metallurgical bonding formation in cold spray additive manufacturing. J Therm Spray Technol. https://doi.org/10.1007/s11666-019-00854-4

    Article  Google Scholar 

  118. Zhang D, Shipway PH, McCartney DG (2005) Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation. J. Therm. Spray. Technol. 14:109–116. https://doi.org/10.1361/10599630522666

    Article  Google Scholar 

  119. Wong W, Vo P, Irissou E et al (2013) Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings. J Therm Spray Technol. https://doi.org/10.1007/s11666-013-9951-6

    Article  Google Scholar 

  120. Barr CJ, Wang L, Coffey JK, Daver F (2017) Influence of surface texturing on scratch/mar visibility for polymeric materials: a review. J. Mater. Sci. 52(3):1221–34

    Article  CAS  Google Scholar 

  121. Rubino F, Astarita A, Carlone P (2018) Thermo-mechanical finite element modeling of the laser treatment of titanium cold-sprayed coatings. Coatings. https://doi.org/10.3390/coatings8060219

    Article  Google Scholar 

  122. Astarita A, Mandolfino C, Lertora E et al (2017) Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy. In: AIP Conference Proceedings

  123. Papyrin A (2001) Cold spray technology. Adv Mater Process 26(6):393–394

    Google Scholar 

  124. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 55(3):829–92

    Article  CAS  Google Scholar 

  125. Rokni MR, Widener CA, Champagne VK, Crawford GA (2015) Microstructure and mechanical properties of cold sprayed 7075 deposition during non-isothermal annealing. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2015.07.016

    Article  Google Scholar 

  126. Li CJ, Li WY (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coatings Technol. https://doi.org/10.1016/S0257-8972(02)00919-2

    Article  Google Scholar 

  127. Steenkiste THV, Smith JR, Teets RE (2002) Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coatings Technol. https://doi.org/10.1016/S0257-8972(02)00018-X

    Article  Google Scholar 

  128. Gärtner F, Stoltenhoff T, Voyer J et al (2006) Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2005.10.007

    Article  Google Scholar 

  129. Raabe D, Sun B, Kwiatkowski Da Silva A et al (2020) Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-020-05947-2

    Article  Google Scholar 

  130. Sadeghi E, Markocsan N, Joshi S (2019) Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. part I: effect of composition and microstructure. J. Therm. Spray Technol. 28(8):1749–88

    Article  CAS  Google Scholar 

  131. Irissou E, Legoux JG, Arsenault B, Moreau C (2007) Investigation of Al-Al2O3 cold spray coating formation and properties. In: Proceedings of the International Thermal Spray Conference

  132. Alghadi AM, Tirkes S, Tayfun U (2020) Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Mater Res Express. https://doi.org/10.1088/2053-1591/ab551b

    Article  Google Scholar 

  133. Goldbaum D, Shockley JM, Chromik RR et al (2012) The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats. J. Therm. Spray Technol. 21(2):288–303

    Article  CAS  Google Scholar 

  134. Chakrabarty R, Song J (2020) A modified Johnson-Cook material model with strain gradient plasticity consideration for numerical simulation of cold spray process. Surf Coatings Technol. https://doi.org/10.1016/j.surfcoat.2020.125981

    Article  Google Scholar 

  135. Zahiri SH, Phan TD, Masood SH, Jahedi M (2014) Development of holistic three-dimensional models for cold spray supersonic jet. J. Therm. Spray Technol. 23(6):919–33

    Article  CAS  Google Scholar 

  136. Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Technol. https://doi.org/10.1361/105996398770350945

    Article  Google Scholar 

  137. Jin Z, Zhang Z, Demir K, Gu GX (2020) Machine learning for advanced additive manufacturing. Matter 3(5):1541–1556

    Article  Google Scholar 

  138. Raoelison RN, Lalu Koithara L, Costil S (2021) Cold spray coating of PEEK surface by copper deposition: Interfacial adhesion at high deposition efficiency and bonding strength. CIRP J Manuf Sci Technol. https://doi.org/10.1016/j.cirpj.2021.05.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Prof Luca Boccarusso for contributing to the conceiving of this review-paper and for fruitful suggestions and considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Viscusi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Gatta, R., Perna, A.S., Viscusi, A. et al. Cold spray deposition of metallic coatings on polymers: a review. J Mater Sci 57, 27–57 (2022). https://doi.org/10.1007/s10853-021-06561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06561-2

Navigation