Skip to main content
Log in

Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Utilization of the photon upconversion (UC) in Pb halide-based perovskite solar cells (PVSCs) and photodetectors is a potential strategy towards broadening the spectral response from the visible to the near-infrared region and decreasing the non-absorption loss of solar energy. Nevertheless, the implementation of upconverting nanomaterials in these photoelectric devices still faces some barriers. Herein, we report a facile and ethylenediamine tetraacetic acid disodium (EDTAD)-assisted hydrothermal approach for growth of rare-earth-element-doped KMnF3 nanocrystals with controllable size and a singular red upconverting emission. EDTAD was demonstrated as a useful chelating agent to regulate the nanomaterial size, morphology and UC emission properties. KMnF3:Yb3+, Er3+ nanocrystals assisted by EDTAD achieved an intense single-band red UC emission. The formed singular UCNCs were successfully applied as an additive to enhance the photovoltaic performance of the PVSC devices. We found proper molar ratio UCNCs as an additive to the perovskite precursor facilitated the growth of semiconductor perovskite, inducing the development of the perovskite film with improved crystallinity, compact grains and fewer defects. At an optimum molar proportion of UCNCs, the mean power conversion efficiency (PCE) of 18.73% was acquired for PVSCs with KMnF3:Yb3+, Er3+ under AM 1.5G, demonstrating a prominent improvement over 25% in average PCE relating to the corresponding value (14.94%) of the PVSC device without UCNCs. Moreover, this singular red emission UCNCs-embedded PVSC was able to work as a photodetector under 980 nm illumination and with a responsivity of 0.26 mA/W.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050

    Article  CAS  Google Scholar 

  2. Best Research-Cell Efficiencies.https://www.nrel.gov/pv/insights/assets/pdfs/cell-pv-effemergingpv

  3. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647

    Article  CAS  Google Scholar 

  4. Zhou HP, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong ZR, You JB, Liu YS, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546

    Article  CAS  Google Scholar 

  5. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535):476–480

    Article  CAS  Google Scholar 

  6. Tan HR, Jain A, Voznyy O, Lan XZ, de Arquer FPG, Fan JZ, Quintero-Bermudez R, Yuan MJ, Zhang B, Zhao YC, Fan FJ, Li PC, Quan LN, Zhao YB, Lu ZH, Yang ZY, Hoogland S, Sargent EH (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326):722–726

    Article  CAS  Google Scholar 

  7. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749):511–515

    Article  CAS  Google Scholar 

  8. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photon 13(7):460–466

    Article  CAS  Google Scholar 

  9. Kim JY, Lee JW, Jung HS, Shin H, Park NG (2020) High-efficiency perovskite solar cells. Chem Rev 120(15):7867–7918

    Article  CAS  Google Scholar 

  10. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  11. Sha WEI, Ren X, Chen L, Choy WCH (2015) The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl Phys Lett 106(22):221104

    Article  Google Scholar 

  12. Pazos-Outon LM, Xiao TP, Yablonovitch E (2018) Fundamental efficiency limit of lead iodide perovskite solar cells. The J Phys Chem Lett 9(7):1703–1711

    Article  CAS  Google Scholar 

  13. He M, Pang X, Liu X, Jiang B, He Y, Snaith H, Lin Z (2016) Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew Chem 55(13):4280–4284

    Article  CAS  Google Scholar 

  14. Jalalah M, Ko Y-H, Harraz FA, Al-Assiri MS, Park J-G (2017) Enhanced efficiency and current density of solar cells via energy-down-shift having energy-tuning-effect of highly UV-light-harvesting Mn2+-doped quantum dots. Nano Energy 33:257–265

    Article  CAS  Google Scholar 

  15. Da Y, Xuan Y, Li Q (2018) Quantifying energy losses in planar perovskite solar cells. Sol Energy Mater Sol Cells 174:206–213

    Article  CAS  Google Scholar 

  16. Meng FL, Wu JJ, Zhao EF, Zheng YZ, Huang ML, Dai LM, Tao X, Chen JF (2017) High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale 9(46):18535–18545

    Article  CAS  Google Scholar 

  17. Li H, Chen C, Jin J, Bi W, Zhang B, Chen X, Xu L, Liu D, Dai Q, Song H (2018) Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells. Nano Energy 50:699–709

    Article  CAS  Google Scholar 

  18. Deng X, Zhang C, Zheng J, Zhou X, Yu M, Chen X, Huang S (2019) Highly bright Li(Gd, Y)F4:Yb, Er upconverting nanocrystals incorporated hole transport layer for efficient perovskite solar cells. Appl Surf Sci 485:332–341

    Article  CAS  Google Scholar 

  19. Correa-Baena JP, Saliba M, Buonassisi T, Gratzel M, Abate A, Tress W, Hagfeldt A (2017) Promises and challenges of perovskite solar cells. Science 358(6364):739–744

    Article  CAS  Google Scholar 

  20. Pazos-Outon LM, Szumilo M, Lamboll R, Richter JM, Crespo-Quesada M, Abdi-Jalebi M, Beeson HJ, Vrucinic M, Alsari M, Snaith HJ, Ehrler B, Friend RH, Deschler F (2016) Photon recycling in lead iodide perovskite solar cells. Science 351(6280):1430–1433

    Article  CAS  Google Scholar 

  21. Karunakaran SK, Arumugam GM, Yang W, Ge S, Khan SN, Xianzhong Lin X, Yang G (2021) Research progress on the application of Lanthanide-Ion-Doped Phosphor materials in perovskite solar cells. ACS Sustain Chem Eng 9:1035–1060

    Article  CAS  Google Scholar 

  22. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat Photon 6(8):560–564

    Article  CAS  Google Scholar 

  23. Wang J, Wang F, Wang C, Liu Z, Liu X (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem 50(44):10369–10372

    Article  CAS  Google Scholar 

  24. Luo Q, Zhang C, Deng X, Zhu H, Li Z, Wang Z, Chen X, Huang S (2017) Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl Mater Interf 9(40):34821–34832

    Article  CAS  Google Scholar 

  25. Liu M, Jia M, Pan H, Li L, Chang M, Ren H, Argoul F, Zhang S, Xu J (2014) Instrument response standard in time-resolved fluorescence spectroscopy at visible wavelength: quenched fluorescein sodium. Appl Spectrosc 68(5):577–583

    Article  CAS  Google Scholar 

  26. Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R (2001) The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J Phys Chem B 105(5):948–953

    Article  CAS  Google Scholar 

  27. Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4(11):2191–2196

    Article  CAS  Google Scholar 

  28. Sell DD, Greene RL, White RM (1967) Optical exciton-magnon absorption in MnF2. Phys Rev 158(2):489–510

    Article  CAS  Google Scholar 

  29. Flaherty JM, Bartolo BD (1973) Radiative and radiationless processes of Er3+ in MnF2. J Lumin 8(1):51–70

    Article  CAS  Google Scholar 

  30. Zeng JH, Xie T, Li ZH, Li YD (2007) Monodispersed nanocrystalline fluoroperovskite up-conversion phosphors. Cryst Growth Des 7(12):2774–2777

    Article  CAS  Google Scholar 

  31. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  CAS  Google Scholar 

  32. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+, phosphors of controlled size and morphology. Adv Mater 17(17):2119

    Article  CAS  Google Scholar 

  33. Tan MC, Al-Baroudi L, Riman RE (2011) Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4:Yb-Er. ACS Appl Mater Interf 3(10):3910–3915

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang F, Lang Y, Yin J, Zhang M, Liu X, Zhang D, Zhao D, Qin G, Qin W (2015) KMnF3:Yb3+, Er3+@KMnF3:Yb3+ active-core–active-shell nanoparticles with enhanced red up-conversion fluorescence for polymer-based waveguide amplifiers operating at 650 nm. J Mater Chem C 3(38):9827–9832

    Article  CAS  Google Scholar 

  35. Vaills Y, Buzare JY, Rousseau M (1990) Luminescent Cr3+centres in KZnF3: an investigation of the vibronic effects. J Phys Condens Matter 2(17):3997–4003

    Article  CAS  Google Scholar 

  36. Patel JL, Davies JJ, Cavenett BC, Takeuchi H, Horai K (1976) Electron spin resonance of axially symmetric Cr3+ centres in KMgF3 and KZnF3. J Phys C Solid State Phys 9(1):129

    Article  CAS  Google Scholar 

  37. Foley BJ, Girard J, Sorenson BA, Chen AZ, Niezgoda JS, Alpert MR, Harper AF, Smilgies D-M, Clancy P, Saidi WA, Choi JJ (2017) Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. J Mater Chem A 5:113–123

    Article  CAS  Google Scholar 

  38. Yang Z, Rajagopal A, Jo SB, Chueh CC, Williams S, Huang CC, Katahara JK, Hillhouse HW, Jen AK (2016) Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett 16(12):7739–7747

    Article  CAS  Google Scholar 

  39. Moore DT, Sai H, Tan KW, Smilgies DM, Zhang W, Snaith HJ, Wiesner U, Estroff LA (2015) Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. J Am Chem Soc 137(6):2350–2358

    Article  CAS  Google Scholar 

  40. Saidaminov MI, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent EH (2018) Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat Energy 3(8):648–654

    Article  CAS  Google Scholar 

  41. Cacciuto A, Auer S, Frenkel D (2004) Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428:404–406

    Article  CAS  Google Scholar 

  42. Zhen J, Zhou W, Chen M (2019) Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J Mater Chem A 7:2754–2763

    Article  CAS  Google Scholar 

  43. Han Q, Bai Y, Liu J, Du K-Z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin AD, Glass JT, Hu J, Therien MJ, Liu J, Mitzi DB (2017) Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ Sci 10(11):2365–2371

    Article  CAS  Google Scholar 

  44. Rajagopal A, Stoddard RJ, Jo SB, Hillhouse HW, Jen AK (2018) Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett 18(6):3985–3993

    Article  CAS  Google Scholar 

  45. Yadav P, Dar MI, Arora N, Alharbi EA, Giordano F, Zakeeruddin SM, Gratzel M (2017) The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater 29(40):1701077

    Article  Google Scholar 

  46. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem 47(13):2402–2406

    Article  CAS  Google Scholar 

  47. Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G (2015) Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem 54(33):9705–9709

    Article  CAS  Google Scholar 

  48. Cheng SH, Weng TM, Lu ML, Tan WC, Chen JY, Chen YF (2013) All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci Rep 3:2694

    Article  Google Scholar 

  49. Zhang H, Xiao Y, Qi F, Liu P, Wang Y, Li F, Wang C, Fang G, Zhao X (2019) Near-infrared light-sensitive hole-transport-layer free perovskite solar cells and photodetectors with hexagonal NaYF4:Yb3+, Tm3+@SiO2 upconversion nanoprism-modified TiO2 scaffold. ACS Sustain Chem Eng 7(9):8236–8244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (Nos. 18ZR1411900, 18ZR1411000), the Large Instruments Open Foundation of East China Normal University and Foundation of Joint Institute of Advanced Science and Technology, East China Normal University, People's Republic of China. All the authors would like to thank Dr. X. Deng for her contribution throughout the study. G. Zhu thanks funding support from the Provincial Natural Science Foundation of Anhui (1908085ME120, 1508085ME104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Zhu or Sumei Huang.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Wu, Z., Hua, Y. et al. Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors. J Mater Sci 56, 14207–14221 (2021). https://doi.org/10.1007/s10853-021-06173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06173-w

Navigation