Skip to main content
Log in

An atomistic study of the deformation behavior of tungsten nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Large-scale atomistic simulations are performed to study tensile and compressive \(\langle 112\rangle\) loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension–compression asymmetry in both the stress–strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.R. Greer, J.T.M. De Hosson, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654–724 (2011)

    Google Scholar 

  2. Z.W. Shan, R.K. Mishra, S.A. Asif, O.L. Warren, A.M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7(2), 115–119 (2008)

    ADS  Google Scholar 

  3. Julia R. Greer, William D. Nix, Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73(24), 245410 (2006)

    ADS  Google Scholar 

  4. D. Kiener, W. Grosinger, G. Dehm, R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56(3), 580–592 (2008)

    Google Scholar 

  5. K.S. Ng, A.H.W. Ngan, Breakdown of Schmids law in micropillars. Scripta Mater. 59(7), 796–799 (2008)

    Google Scholar 

  6. R. Dou, B. Derby, A universal scaling law for the strength of metal micropillars and nanowires. Scripta Mater. 61(5), 524–527 (2009)

    Google Scholar 

  7. Michael D. Uchic, Dennis M. Dimiduk, Jeffrey N. Florando, William D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)

    ADS  Google Scholar 

  8. Christopher R. Weinberger, Wei Cai, Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. USA 105(38), 14304–14307 (2008)

    ADS  Google Scholar 

  9. S. Xu, J.K. Startt, T.G. Payne, C.S. Deo, D.L. McDowell, Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten. J. Appl. Phys. 121(17), 175101 (2017)

    ADS  Google Scholar 

  10. S. Xu, S.Z. Chavoshi, Uniaxial deformation of nanotwinned nanotubes in body-centered cubic tungsten. Curr. Appl. Phys. 18(1), 114–121 (2018)

    ADS  Google Scholar 

  11. Julia R. Greer, Ju-Young Kim, Michael J. Burek, The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61(12), 19–25 (2009)

    Google Scholar 

  12. Suzhi Li, Xiangdong Ding, Junkai Deng, Ju Turab Lookman, Xiaobing Ren Li, Jun Sun, Avadh Saxena, Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B 82(20), 205435 (2010)

    ADS  Google Scholar 

  13. Ajing Cao, Shape memory effects and pseudoelasticity in bcc metallic nanowires. J. Appl. Phys. 108(11), 113531 (2010)

    ADS  Google Scholar 

  14. Wuwei Liang, Min Zhou, Fujiu Ke, Shape memory effect in Cu nanowires. Nano Lett. 5(10), 2039–2043 (2005)

    ADS  Google Scholar 

  15. Ju-Young Kim, Julia R. Greer, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57(17), 5245–5253 (2009)

    Google Scholar 

  16. G. Sainath, B.K. Choudhary, Deformation behaviour of body centered cubic iron nanopillars containing coherent twin boundaries. Philos. Mag. 96(32–34), 3502–3523 (2016)

    ADS  Google Scholar 

  17. Ju-Young Kim, Dongchan Jang, Julia R. Greer, Crystallographic orientation and size dependence of tension-compression asymmetry in molybdenum nano-pillars. Int. J. Plast. 28(1), 46–52 (2012)

    Google Scholar 

  18. A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mnig, O. Kraft, E. Arzt, Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103(10), 105501 (2009)

    ADS  Google Scholar 

  19. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100(2), 025502 (2008)

  20. Ajing Cao, E. Ma, Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater. 56(17), 4816–4828 (2008)

    Google Scholar 

  21. C. Marichal, H. Van Swygenhoven, S. Van Petegem, C. Borca, {110} Slip with {112} slip traces in bcc Tungsten. Sci. Rep. 3, 2547 (2013)

  22. Andrew T. Jennings, Ju Li, Julia R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59(14), 5627–5637 (2011)

    Google Scholar 

  23. P.A.T. Olsson, H.S. Park, Atomistic study of the buckling of gold nanowires. Acta Mater. 59(10), 3883–3894 (2011)

    Google Scholar 

  24. Jiangwei Wang, Zhi Zeng, Christopher R. Weinberger, Ze Zhang, Ting Zhu, Scott X. Mao, In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14(6), 594–600 (2015)

    ADS  Google Scholar 

  25. Dongchan Jang, Xiaoyan Li, Huajian Gao, Julia R. Greer, Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotech. 7(9), 594–601 (2012)

    ADS  Google Scholar 

  26. Steve Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    ADS  MATH  Google Scholar 

  27. Cynthia L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085–11088 (1998)

    ADS  Google Scholar 

  28. Alexander Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20(4), 045021 (2012)

    ADS  Google Scholar 

  29. Alexander Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    ADS  Google Scholar 

  30. G.J. Ackland, R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals. Philos. Mag. A 56(1), 15–30 (1987)

    ADS  Google Scholar 

  31. M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals. Philos. Mag. A 50(1), 45–55 (1984)

    ADS  Google Scholar 

  32. Wei-Wei Pang, Ping Zhang, Guang-Cai Zhang, Xu Ai-Guo, Xian-Geng Zhao, Nucleation and growth mechanisms of hcp domains in compressed iron. Sci. Rep. 4, 5273 (2014)

    Google Scholar 

  33. B.T. Wang, J.L. Shao, G.C. Zhang, W.D. Li, P. Zhang, Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression. J. Phys.: Condens. Matter 21(49), 495702 (2009)

    Google Scholar 

  34. G. Bonny, D. Terentyev, A. Bakaev, P. Grigorev, D. Van Neck, Many-body central force potentials for tungsten. Modell. Simul. Mater. Sci. Eng. 22(5), 053001 (2014)

    ADS  Google Scholar 

  35. M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, F. Willaime, Interatomic potentials for modelling radiation defects and dislocations in tungsten. J. Phys.: Condens. Matter 25(39), 395502 (2013)

    Google Scholar 

  36. G. Sainath, B.K. Choudhary, Atomistic simulations on ductile-brittle transition in \(\langle 111\rangle\) BCC Fe nanowires. J. Appl. Phys. 122(9), 095101 (2017)

    ADS  Google Scholar 

  37. E. Rabkin, H.S. Nam, D.J. Srolovitz, Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 55(6), 2085–2099 (2007)

    Google Scholar 

  38. Ju-Young Kim, Dongchan Jang, Julia R. Greer, Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58(7), 2355–2363 (2010)

    Google Scholar 

  39. G. Sainath, B.K. Choudhary, T. Jayakumar, Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires. Comput. Mater. Sci. 104, 76–83 (2015)

    Google Scholar 

  40. G. Sainath, B.K. Choudhary, Molecular dynamics simulations on size dependent tensile deformation behaviour of [110] oriented body centred cubic iron nanowires. Mater. Sci. Eng.: A 640, 98–105 (2015)

    Google Scholar 

  41. Xin Yan, Pradeep Sharma, Time-scaling in atomistics and the rate-dependent mechanical behavior of nanostructures. Nano Lett. 16(6), 3487–3492 (2016)

    ADS  Google Scholar 

  42. Eugen Rabkin, David J. Srolovitz, Onset of plasticity in gold nanopillar compression. Nano Lett. 7(1), 101–107 (2007)

    ADS  Google Scholar 

  43. Subhendu Chakraborty, Jiaxi Zhang, Somnath Ghosh, Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks. Comput. Mater. Sci. 121, 23–34 (2016)

    Google Scholar 

  44. S.Z. Xu, Z.M. Hao, Q. Wan, A molecular dynamics study of void interaction in copper. IOP Conf. Ser.: Mater. Sci. Eng. 10(1), 012175 (2010)

    Google Scholar 

  45. S.Z. Xu, Z.M. Hao, Y.Q. Su, Y. Yu, Q. Wan, W.J. Hu, An analysis on nanovoid growth in body-centered cubic single crystalline vanadium. Comput. Mater. Sci. 50(8), 2411–2421 (2011)

    Google Scholar 

  46. S.Z. Xu, Z.M. Hao, Y.Q. Su, W.J. Hu, Y. Yu, Q. Wan, Atomic collision cascades on void evolution in vanadium. Radiat. Eff. Def. Solids 167(1), 12–25 (2012)

    ADS  Google Scholar 

  47. Y. Su, S. Xu, On the role of initial void geometry in plastic deformation of metallic thin films: a molecular dynamics study. Mater. Sci. Eng.: A 678, 153–164 (2016)

    Google Scholar 

  48. S. Xu, Y. Su, Nanovoid growth in BCC \(\alpha\)-Fe: influences of initial void geometry. Model. Simul. Mater. Sci. Eng. 24(8), 085015 (2016)

  49. S. Xu, Y. Su, D. Chen, L. Li, Plastic deformation of Cu single crystals containing an elliptic cylindrical void. Mater. Lett. 193, 283–287 (2017)

    Google Scholar 

Download references

Acknowledgements

The work of SX was supported in part by the Elings Prize Fellowship in Science offered by the California NanoSystems Institute (CNSI) on the UC Santa Barbara campus. SX also acknowledges support from the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuozhi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Su, Y., Chen, D. et al. An atomistic study of the deformation behavior of tungsten nanowires. Appl. Phys. A 123, 788 (2017). https://doi.org/10.1007/s00339-017-1414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1414-3

Navigation