Skip to main content
Log in

Metal cation-ligand interaction modulated mono-network ionic conductive hydrogel for wearable strain sensor

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ionic cross-linked hydrogels with flexibility, self-recovery and conductivity have attracted extensive attention for the diverse applications in flexible and wearable sensors as ionic conductive hydrogels. However, the hydrogels need to trade off the ionic conductivity for the mechanical property due to the significant decrease in ionic bond strength at high salt concentration. It remains a challenge to find a feasible strategy to realize both excellent mechanical property and ionic conductivity in ionic cross-linked hydrogels. Herein, hydrogels with high extensibility, fatigue, toughness resistance and ionic conductivity are prepared by the incorporating of trivalent metal cations as cross-linker in one-pot reaction. The improved mechanical property of Al3+ cross-linked hydrogel can be attributed to the labile ligand substitution of Al3+ compared with that of Cr3+, resulting in the rapid self-recovery of ionic bonds. Meanwhile, the hydrogels exhibit a high ionic conductivity, sensibility and stability as strain sensors. The hydrogel sensors can detect the motion of multiple body parts and distinguish different electrical signals. Our study will unfold the crucial role of the metal cation-ligand interaction in the design of soft materials with excellent mechanical performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figur 9

Similar content being viewed by others

References

  1. He F, You X, Gong H et al (2020) Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl Mater Interfaces 12:6442–6450

    Article  CAS  Google Scholar 

  2. Zhou Y, Wan C, Yang Y et al (2019) Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 29:1806220

    Article  Google Scholar 

  3. Jing X, Mi H-Y, Peng X-F, Turng L-S (2018) Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136:63–72

    Article  CAS  Google Scholar 

  4. Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A Bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29:1700321

    Article  Google Scholar 

  5. Han L, Lu X, Liu K et al (2017) Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11:2561–2574

    Article  CAS  Google Scholar 

  6. Cai G, Wang J, Qian K, Chen J, Li S, Lee PS (2017) Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 4:1600190

    Article  Google Scholar 

  7. Schwartz G, Tee BC, Mei J et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Article  Google Scholar 

  8. Liu J, Tan CS, Yu Z, Lan Y, Abell C, Scherman OA (2017) Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Self-Recovery. Adv Mater 29:1604951

    Article  Google Scholar 

  9. Wang C, Hu K, Zhao C et al (2020) Customization of conductive elastomer based on PVA/PEI for stretchable sensors. Small 16:1904758

    Article  CAS  Google Scholar 

  10. Han L, Yan L, Wang M et al (2018) Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem Mater 30:5561–5572

    Article  CAS  Google Scholar 

  11. Liao M, Wan P, Wen J et al (2017) Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv Funct Mater 27:1703852

    Article  Google Scholar 

  12. Yu Y, Yuk H, Parada GA et al (2019) Multifunctional “Hydrogel Skins” on diverse polymers with arbitrary shapes. Adv Mater 31:1807101

    Article  Google Scholar 

  13. Jin B, Song H, Jiang R, Song J, Zhao Q, Xie T (2018) Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci Adv 4:3865

    Article  Google Scholar 

  14. Cao Y, Tan Y, Li S et al (2019) Self-healing electronic skins for aquatic environments. Nat Electron 2:75–82

    Article  Google Scholar 

  15. Wang C, Sim K, Chen J et al (2018) Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater 30:1706695

    Article  Google Scholar 

  16. Sun Y, Chen C, Liu J et al (2020) Self-assembly of porphyrin-based metallacages into octahedra. J Am Chem Soc 142:17903–17907

    Article  CAS  Google Scholar 

  17. Sun Y, Chen C, Wang X et al (2020) Self-assembly of metallacages into centimeter films with tunable size and emissions. J Am Chem Soc 142:17933–17937

    Article  CAS  Google Scholar 

  18. Liu H, Wang X, Cao Y et al (2020) Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl Mater Interfaces 12:25334–25344

    Article  CAS  Google Scholar 

  19. Darabi MA, Khosrozadeh A, Mbeleck R et al (2017) Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater 29:1700533

    Article  Google Scholar 

  20. Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W (2019) Disruptive, soft, wearable sensors. Adv Mater 32:1904664

    Article  Google Scholar 

  21. Zhou G, Yang L, Li W, Chen C, Liu Q (2020) A Regenerable hydrogel electrolyte for flexible supercapacitors. iScience 23:101502

    Article  CAS  Google Scholar 

  22. Huang H, Han L, Li J et al (2020) Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J Mater Chem A 8:10291–10300

    Article  CAS  Google Scholar 

  23. Zang Y, Zhang F, Di C-a, Zhu D (2015) Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz 2:140–156

    Article  CAS  Google Scholar 

  24. Zhao F, Wu D, Yao D et al (2017) An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomater 64:334–345

    Article  CAS  Google Scholar 

  25. Zhang J, Zhu Y, Song J et al (2018) Novel balanced charged alginate/pei polyelectrolyte hydrogel that resists foreign-body reaction. ACS Appl Mater Interfaces 10:6879–6886

    Article  CAS  Google Scholar 

  26. Zhao Y, Li Z, Song S et al (2019) Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater 29:1901474

    Article  Google Scholar 

  27. Liu H, Cheng Y, Chen J et al (2018) Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomater 73:103–111

    Article  CAS  Google Scholar 

  28. Ming Z, Pang Y, Liu J (2020) Switching between elasticity and plasticity by network strength competition. Adv Mater 32:1906870

    Article  CAS  Google Scholar 

  29. Zhao X, Pei D, Yang Y et al (2021) Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv Funct Mater 31:2009442

    Article  Google Scholar 

  30. Yu J, Xu K, Chen X et al (2021) Highly stretchable, tough, resilient, and antifatigue hydrogels based on multiple hydrogen bonding interactions formed by phenylalanine derivatives. Biomacromol 22:1297–1304

    Article  CAS  Google Scholar 

  31. Yu HC, Li CY, Du M, Song Y, Wu ZL, Zheng Q (2019) Improved toughness and stability of κ-carrageenan/polyacrylamide double-network hydrogels by dual cross-linking of the first network. Macromolecules 52:629–638

    Article  CAS  Google Scholar 

  32. Tao Z, Fan H, Huang J, Sun T, Kurokawa T, Gong JP (2019) Fabrication of tough hydrogel composites from photoresponsive polymers to show double-network effect. ACS Appl Mater Interfaces 11:37139–37146

    Article  CAS  Google Scholar 

  33. Xu L, Wang C, Cui Y, Li A, Qiao Y, Qiu D (2019) Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci Adv 5:3442

    Article  Google Scholar 

  34. Yang Y, Wang X, Yang F, Wang L, Wu D (2018) Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater 30:1707071

    Article  Google Scholar 

  35. Pan J, Jin Y, Lai S, Shi L, Fan W, Shen Y (2019) An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem Eng J 370:1228–1238

    Article  CAS  Google Scholar 

  36. Chen C, Lan J, Li Y, Liang D, Ni X, Liu Q (2020) Secondary structure-governed polypeptide cross-linked polymeric hydrogels. Chem Mater 32:1153–1161

    Article  CAS  Google Scholar 

  37. Lan J, Ni X, Zhao C, Liu Q, Chen C (2018) Multiamine-induced self-healing poly (Acrylic Acid) hydrogels with shape memory behavior. Polym J 50:485–493

    Article  CAS  Google Scholar 

  38. Wang L, Gao G, Zhou Y et al (2019) Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces 11:3506–3515

    Article  CAS  Google Scholar 

  39. Liang Y, Ye L, Sun X, Lv Q, Liang H (2020) Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors. ACS Appl Mater Interfaces 12:1577–1587

    Article  CAS  Google Scholar 

  40. Fan W, Zhang X, Cui H et al (2019) Direct current-powered high-performance ionic hydrogel strain sensor based on electrochemical redox reaction. ACS Appl Mater Interfaces 11:24289–24297

    Article  CAS  Google Scholar 

  41. Liu S, Li L (2017) Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Interfaces 9:26429–26437

    Article  CAS  Google Scholar 

  42. Yang CH, Wang MX, Haider H et al (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422

    Article  CAS  Google Scholar 

  43. Zhang Z, Gao Z, Wang Y et al (2019) Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices. Macromolecules 52:2531–2541

    Article  CAS  Google Scholar 

  44. Pereira RF, Tapia MJ, Valente AJ, Burrows HD (2012) Effect of metal ion hydration on the interaction between sodium carboxylates and aluminum(III) or chromium(III) ions in aqueous solution. Langmuir 28:168–177

    Article  CAS  Google Scholar 

  45. Ni X, Liang D, Zhou G, Zhao C, Chen C (2020) Bioinspired strategy to reinforce hydrogels via cooperative effect of dual physical cross-linkers. Macromol Chem Phys 221:1900485

    Article  CAS  Google Scholar 

  46. Xia S, Zhang Q, Song S, Duan L, Gao G (2019) Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem Mater 31:9522–9531

    Article  CAS  Google Scholar 

  47. Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B (2017) Design and development of trivalent aluminum ions induced selfhealing polyacrylic acid novel hydrogels. Polymer 126:196–205

    Article  CAS  Google Scholar 

  48. Hu Y, Du Z, Deng X et al (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668

    Article  CAS  Google Scholar 

  49. Li X, Yang Q, Zhao Y, Long S, Zheng J (2017) Dual physically crosslinked double network hydrogels with high toughness and self-healing properties. Soft Matter 13:911–920

    Article  CAS  Google Scholar 

  50. Qin Z, Niu R, Tang C et al (2018) A dual-crosslinked strategy to construct physical hydrogels with high strength, toughness, good mechanical recoverability, and shape-memory ability. Macromol Mater Eng 303:1700396

    Article  Google Scholar 

  51. Cao C, Li Y (2020) Highly stretchable calcium ion/polyacrylic acid hydrogel prepared by freezing–thawing. J Mater Sci 55:5340–5348

    Article  CAS  Google Scholar 

  52. Ding H, Zhang XN, Zheng SY, Song Y, Wu ZL, Zheng Q (2017) Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. Polymer 131:95–103

    Article  CAS  Google Scholar 

  53. Dai X, Zhang Y, Gao L et al (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27:3566–3571

    Article  CAS  Google Scholar 

  54. Sun TL, Kurokawa T, Kuroda S et al (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    Article  CAS  Google Scholar 

  55. Zheng SY, Liu C, Jiang L et al (2019) Slide-ring cross-links mediated tough metallosupramolecular hydrogels with superior self-recoverability. Macromolecules 52:6748–6755

    Article  CAS  Google Scholar 

  56. Wang X-H, Song F, Qian D et al (2018) Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chem Eng J 349:588–594

    Article  CAS  Google Scholar 

  57. Chen H, Liu Y, Ren B et al (2017) Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv Funct Mater 27:1703086

    Article  Google Scholar 

  58. Lee C-J, Wu H, Hu Y et al (2018) Ionic conductivity of polyelectrolyte hydrogels. ACS Appl Mater Interfaces 10:5845–5852

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province (LY20B040003 and LY19B040001) Natural Science Foundation of Ningbo (202003N4103), Natural Science Foundation of Zhejiang Province Department of Education (Y201941309), National Natural Science Foundation of China (21604044) and Major Program of Ningbo Science and Technology Innovation 2025 (2020Z093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyi Chen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Zhou, G., Hu, Y. et al. Metal cation-ligand interaction modulated mono-network ionic conductive hydrogel for wearable strain sensor. J Mater Sci 56, 14531–14541 (2021). https://doi.org/10.1007/s10853-021-06242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06242-0

Navigation