Skip to main content

Advertisement

Log in

Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

3D Printing, utilizing a layer-by-layer deposition of materials, is advantageous to manufacture parts as it involves fewer process steps, provides great flexibility for prototyping, especially of complex parts, and has low material waste. Yet, the mechanical properties of 3D printed parts have always been a concern due to the weak inter-layer bonding and rough surface. 3D printed continuous fiber reinforced polymer composites (CFRPCs) use continuous fiber reinforcements for the polymer matrix, which significantly improve the mechanical properties of printed parts. CFRPCs are widely used in aerospace, automobile, medical industry and other fields due to their excellent specific mechanical properties. Compared with other 3D printing technologies, fused deposition modeling (FDM) has the advantages of low cost and simple operation to fabricate CFRPCs. In this review article, the choices of various continuous fibers and matrix polymers and their effect on the performance of CFRPCs have been discussed. Furthermore, the latest equipment and methods to fabricate CFRPCs will be summarized, and the key parameters affecting the properties of CFRPCs analyzed. At the end, based on the related research, we critically highlight the challenges and opportunities associated with FDM of CFRPCs to point out the direction of future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp 10(4):175–185. https://doi.org/10.1080/17452759.2015.1111519

    Article  Google Scholar 

  2. Wang Y-C, Chen T, Yeh Y-L (2019) Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. Int J Adv Manuf Technol 105(10):4059–4069. https://doi.org/10.1007/s00170-018-1927-8

    Article  Google Scholar 

  3. Murr LE (2016) Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J Mater Sci Technol 32(10):987–995. https://doi.org/10.1016/j.jmst.2016.08.011

    Article  Google Scholar 

  4. Chung K-C, Shu M-H, Wang Y-C, Huang J-C, Lau EM (2020) 3D printing technologies applied to the manufacturing of aircraft components. Mod Phys Lett B 34:7–9. https://doi.org/10.1142/s0217984920400187

    Article  Google Scholar 

  5. Pei E, Shen J, Watling J (2015) Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyp J 21(5):556–571. https://doi.org/10.1108/rpj-09-2014-0126

    Article  Google Scholar 

  6. Korger M, Bergschneider J, Lutz M, Mahltig B, Finsterbusch K, Rabe M (2016) Possible applications of 3D printing technology on textile substrates. In: Aumann S, Ehrmann A, Weber MO (eds), 48th conference of the international federation of knitting technologists. IOP conference series-materials science and engineering 141: 012011. Doi:https://doi.org/10.1088/1757-899x/141/1/012011

  7. Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ (2019) An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res 36(1):1–20. https://doi.org/10.1007/s11095-018-2531-1

    Article  CAS  Google Scholar 

  8. Revilla-Leon M, Ozcan M (2019) Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 28(2):146–158. https://doi.org/10.1111/jopr.12801

    Article  Google Scholar 

  9. Dodziuk H (2016) Applications of 3D printing in healthcare. Pol J Thorac Cardiovasc Surg 13(3):283–293. https://doi.org/10.5114/kitp.2016.62625

    Article  Google Scholar 

  10. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  11. Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045

    Article  Google Scholar 

  12. Koncic J, Scapec J (2018) 3D print additive technology as a form of textile material substitute in clothing design—interdisciplinary approach in designing corsets and fashion accessories. Ind Textila 69(3):190–196

    Article  Google Scholar 

  13. Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R (2017) Polymers for 3D Printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  CAS  Google Scholar 

  14. Wickramasinghe S, Truong D, Phuong T (2020) FDM-based 3D printing of polymer and associated composite: a review on mechanical properties. Defects Treat Polym 12(7):1529. https://doi.org/10.3390/polym12071529

    Article  CAS  Google Scholar 

  15. Rahim TNAT, Abdullah AM, Akil HM (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59(4):589–624. https://doi.org/10.1080/15583724.2019.1597883

    Article  CAS  Google Scholar 

  16. Chen Z, Zhao D, Liu B, Nian G, Li X, Yin J, Qu S, Yang W (2019) 3D printing of multifunctional hydrogels. Adv Funct Mater 29(20):1900971. https://doi.org/10.1002/adfm.201900971

    Article  CAS  Google Scholar 

  17. Rimington RP, Capel AJ, Christie SDR, Lewis MP (2017) Biocompatible 3D printed polymers via fused deposition modelling direct C2C12 cellular phenotype in vitro. Lab on a Chip 17(17):2982–2993. https://doi.org/10.1039/c7lc00577f

    Article  CAS  Google Scholar 

  18. Sharma R, Singh R, Penna R, Fraternali F (2018) Investigations for mechanical properties of Hap, PVC and PP based 3D porous structures obtained through biocompatible FDM filaments. Compos Part B-Eng 132:237–243. https://doi.org/10.1016/j.compositesb.2017.08.021

    Article  CAS  Google Scholar 

  19. Ming Y, Duan Y, Wang B, Xiao H, Zhang X (2019) A Novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites. Materials 12(9):1369. https://doi.org/10.3390/ma12091369

    Article  CAS  Google Scholar 

  20. Hao W, Liu Y, Zhou H, Chen H, Fang D (2018) Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Test 65:29–34. https://doi.org/10.1016/j.polymertesting.2017.11.004

    Article  CAS  Google Scholar 

  21. Zanjanijam AR, Major I, Lyons JG, Lafont U, Devine DM (2020) Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers 12(8):1665. https://doi.org/10.3390/polym12081665

    Article  CAS  Google Scholar 

  22. Aliheidari N, Christ J, Tripuraneni R, Nadimpalli S, Ameli A (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Des 156:351–361. https://doi.org/10.1016/j.matdes.2018.07.001

    Article  CAS  Google Scholar 

  23. Dizon JRC, Espera AH Jr, Chen Q, Advincula RC (2018) O Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  CAS  Google Scholar 

  24. Saroia J, Wang YN, Wei QH, Lei MJ, Li XP, Guo Y, Zhang K (2020) A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106(5):1695–1721. https://doi.org/10.1007/s00170-019-04534-z

    Article  Google Scholar 

  25. Hindersmann A (2019) Confusion about infusion: an overview of infusion processes. Compos Part A-Appl Sci Manuf 126:105583. https://doi.org/10.1016/j.compositesa.2019.105583

    Article  CAS  Google Scholar 

  26. Lesiak P, Szelag M, Budaszewski D, Plaga R, Milenko K, Rajan G, Semenova Y, Farrell G, Boczkowska A, Domanski A, Wolinski T (2012) Influence of lamination process on optical fiber sensors embedded in composite material. Measurement 45(9):2275–2280. https://doi.org/10.1016/j.measurement.2012.03.010

    Article  Google Scholar 

  27. Dizon JRC, Valino AD, Souza LR, Espera AH Jr, Chen Q, Advincula RC (2019) Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. Mrs Commun 9(4):1267–1283. https://doi.org/10.1557/mrc.2019.147

    Article  CAS  Google Scholar 

  28. Altaf K, Qayyum JA, Rani AMA, Ahmad F, Megat-Yusoff PSM, Baharom M, Aziz ARA, Jahanzaib M, German RM (2018) Performance analysis of enhanced 3D printed polymer molds for metal injection molding process. Metals 8(6):433. https://doi.org/10.3390/met8060433

    Article  CAS  Google Scholar 

  29. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog PolyM Sci 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162

    Article  CAS  Google Scholar 

  30. Dickson AN, Abourayana HM, Dowling DP (2020) 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication-a review. Polymers 12(10):2188. https://doi.org/10.3390/polym12102188

    Article  CAS  Google Scholar 

  31. Jiang Y, Raney JR (2019) 3D Printing of amylopectin-based natural fiber composites. Adv Mater Technol 4(11):1900521. https://doi.org/10.1002/admt.201900521

    Article  CAS  Google Scholar 

  32. Gregor-Svetec D, Leskovsek M, Brodnjak UV, Elesini US, Muck D, Urbas R (2020) Characteristics of HDPE/cardboard dust 3D printable composite filaments. J Mater Process Technol 276:116379. https://doi.org/10.1016/j.jmatprotec.2019.116379

    Article  CAS  Google Scholar 

  33. Badouard C, Traon F, Denoual C, Mayer-Laigle C, Paes G, Bourmaud A (2019) Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind Crops Prod 135:246–250. https://doi.org/10.1016/j.indcrop.2019.04.049

    Article  CAS  Google Scholar 

  34. Liu H, He H, Peng X, Huang B, Li J (2019) Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: effect of printing orientation on tensile performance. Polym Adv Technol 30(4):910–922. https://doi.org/10.1002/pat.4524

    Article  CAS  Google Scholar 

  35. Fan C, Shan Z, Zou G, Zhan L, Yan D (2020) Performance of short fiber interlayered reinforcement thermoplastic resin in additive manufacturing. Materials 13(12):2868. https://doi.org/10.3390/ma13122868

    Article  CAS  Google Scholar 

  36. Kabir SMF, Mathur K, Seyam AFM (2020) A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties. Compos Struct 232:111476. https://doi.org/10.1016/j.compstruct.2019.111476

    Article  Google Scholar 

  37. Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:23058. https://doi.org/10.1038/srep23058

    Article  CAS  Google Scholar 

  38. Isobe T, Tanaka T, Nomura T, Yuasa R (2018) Comparison of strength of 3D printing objects using short fiber and continuous long fiber. In: 13th international conference on textile composites IOP conference series materials science and engineering 406: 012042. doi:https://doi.org/10.1088/1757-899x/406/1/012042

  39. Mohammadizadeh M, Imeri A, Fidan I, Elkelany M (2019) 3D printed fiber reinforced polymer composites—structural analysis. Compos Part B: Eng 175:107112. https://doi.org/10.1016/j.compositesb.2019.107112

    Article  CAS  Google Scholar 

  40. Le Duigou A, Barbe A, Guillou E, Castro M (2019) 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater Des 180:107884. https://doi.org/10.1016/j.matdes.2019.107884

    Article  CAS  Google Scholar 

  41. Sang L, Han SF, Peng XS, Jian XG, Wang JY (2019) Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties. Compos Part A-Appl Sci Manuf 125:105518. https://doi.org/10.1016/j.compositesa.2019.105518

    Article  CAS  Google Scholar 

  42. Dou H, Cheng Y, Ye W, Zhang D, Li J, Miao Z, Rudykh S (2020) effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials 13(17):3850. https://doi.org/10.3390/ma13173850

    Article  CAS  Google Scholar 

  43. Ming Y, Xin Z, Zhang J, Duan Y, Wang B (2020) Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos Commun 21:100401. https://doi.org/10.1016/j.coco.2020.100401

    Article  Google Scholar 

  44. Liu TF, Tian XY, Zhang MY, Abliz D, Li DC, Ziegmann G (2018) Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites. Compos Part A-Appl Sci Manuf 114:368–376. https://doi.org/10.1016/j.compositesa.2018.09.001

    Article  CAS  Google Scholar 

  45. Suteja J, Firmanto H, Soesanti A, Christian C (2020) Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720945371

    Article  Google Scholar 

  46. Qiao J, Li YR, Li LQ (2019) Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites. Addit Manuf 30:100926. https://doi.org/10.1016/j.addma.2019.100926

    Article  CAS  Google Scholar 

  47. Chacon JM, Caminero MA, Nunez PJ, Garcia-Plaza E, Garcia-Moreno I, Reverte JM (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos Sci Technol 181:18. https://doi.org/10.1016/j.compscitech.2019.107688

    Article  CAS  Google Scholar 

  48. Cuan-Urquizo E, Barocio E, Tejada-Ortigoza V, Pipes RB, Rodriguez CA, Roman-Flores A (2019) Characterization of the mechanical properties of FFF structures and materials: a review on the experimental. Comput Theor Approaches Mater 12(6):895. https://doi.org/10.3390/ma12060895

    Article  CAS  Google Scholar 

  49. Li H, Wang T, Joshi S, Yu Z (2019) The quantitative analysis of tensile strength of additively manufactured continuous carbon fiber reinforced polylactic acid (PLA). Rapid Prototy J 25(10):1624–1636. https://doi.org/10.1108/rpj-01-2018-0005

    Article  Google Scholar 

  50. Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225. https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  CAS  Google Scholar 

  51. Liu Y, Kumar S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev 52(3–4):234–258. https://doi.org/10.1080/15583724.2012.705410

    Article  CAS  Google Scholar 

  52. Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos Part B-Eng 175:107147. https://doi.org/10.1016/j.compositesb.2019.107147

    Article  CAS  Google Scholar 

  53. Yang C, Tian X, Liu T, Cao Y, Li D (2017) 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp J 23(1):209–215. https://doi.org/10.1108/rpj-08-2015-0098

    Article  Google Scholar 

  54. Vasile C (2002) Role of the polymer degradation processes in environmental pollution and waste treatment. Polimery 47(7):517–522. https://doi.org/10.14314/polimery.2002.517

    Article  CAS  Google Scholar 

  55. Vinyas M, Athul SJ, Harursampath D, Thoi TN (2019) Experimental evaluation of the mechanical and thermal properties of 3D printed PLA and its composites. Mater Res Express 6(11):115301. https://doi.org/10.1088/2053-1591/ab43ab

    Article  CAS  Google Scholar 

  56. Garg M, White SR, Sottos NR (2019) Rapid degradation of poly(lactic acid) with organometallic catalysts. Acs Appl Mater Interfaces 11(49):46226–46232. https://doi.org/10.1021/acsami.9b17599

    Article  CAS  Google Scholar 

  57. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B-Eng 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  CAS  Google Scholar 

  58. Hinchcliffe SA, Hess KM, Srubar WV (2016) Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos Part B-Eng 95:346–354. https://doi.org/10.1016/j.compositesb.2016.03.089

    Article  CAS  Google Scholar 

  59. Zhang H, Liu D, Huang T, Hu Q, Lammer H (2020) Three-dimensional printing of continuous flax fiber-reinforced thermoplastic composites by five-axis machine. Materials 13(7):1678. https://doi.org/10.3390/ma13071678

    Article  CAS  Google Scholar 

  60. Pinpathomrat B, Yamada K, Yokoyama A (2020) The effect of UV irradiation on polyamide 6/carbon-fiber composites based on three-dimensional printing. Sn Appl Sci 2(9):101184. https://doi.org/10.1007/s42452-020-03319-4

    Article  CAS  Google Scholar 

  61. Ibrahim Y, Elkholy A, Schofield JS, Melenka GW, Kempers R (2020) Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf-Polym Compos Sci 6(1):17–28. https://doi.org/10.1080/20550340.2019.1710023

    Article  CAS  Google Scholar 

  62. Composites Material Datasheet (2020) https://markforged.com/datasheets. Accessed 1 Dec 2020

  63. Azarov AV, Antonov FK, Golubev MV, Khaziev AR, Ushanov SA (2019) Composite 3D printing for the small size unmanned aerial vehicle structure. Compos Part B-Eng 169:157–163. https://doi.org/10.1016/j.compositesb.2019.03.073

    Article  Google Scholar 

  64. Yeh Y-L (2020) The standard strength test of 3D printing materials and its application for UAV propellers. Mod Phys Lett B 34:7–9. https://doi.org/10.1142/s0217984920400175

    Article  Google Scholar 

  65. Chen QQ, Boisse P, Park CH, Saouab A, Breard J (2011) Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos Struct 93(7):1692–1703. https://doi.org/10.1016/j.compstruct.2011.01.002

    Article  Google Scholar 

  66. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8(9):5834–5846. https://doi.org/10.3390/ma8095271

    Article  CAS  Google Scholar 

  67. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  CAS  Google Scholar 

  68. Goh GD, Yap YL, Tan HKJ, Sing SL, Goh GL, Yeong WY (2020) Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Sol State Mater Sci 45(2):113–133. https://doi.org/10.1080/10408436.2018.1549977

    Article  CAS  Google Scholar 

  69. Guinault A, Sollogoub C (2009) Thermomechanical properties of ABS/PA and ABS/PC blends. Int J Mater Form 2:701–704. https://doi.org/10.1007/s12289-009-0531-8

    Article  Google Scholar 

  70. Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A-Appl Sci Manuf 88:198–205. https://doi.org/10.1016/j.compositesa.2016.05.032

    Article  CAS  Google Scholar 

  71. Tian X, Liu T, Wang Q, Dilmurat A, Li D, Ziegmann G (2017) Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Clean Prod 142:1609–1618. https://doi.org/10.1016/j.jclepro.2016.11.139

    Article  CAS  Google Scholar 

  72. Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D (2015) Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics 9(6):061103. https://doi.org/10.1063/1.4939031

    Article  CAS  Google Scholar 

  73. Mosleh N, Rezadoust AM, Dariushi S (2020) Determining process-window for manufacturing of continuous carbon fiber-reinforced composite using 3D-printing. Mater Manuf Process. https://doi.org/10.1080/10426914.2020.1843664

    Article  Google Scholar 

  74. Prusinowski A, Kaczynski R (2020) Investigation of tribological and strength properties of ABS/CF fibrous composites formed in fused deposition modeling. J Frict Wear 41(4):318–325. https://doi.org/10.3103/s106836662004011x

    Article  Google Scholar 

  75. Park D-C, Park C-W, Shin D-H, Kim Y-H (2018) A Study on crystallization of thermoplastic aromatic polymer. Compos Res 31(2):63–68. https://doi.org/10.7234/composres.2018.31.2.063

    Article  Google Scholar 

  76. Luo M, Tian XY, Shang JF, Zhu WJ, Li DC, Qin YJ (2019) Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites. Compos Part A-Appl Sci Manuf 121:130–138. https://doi.org/10.1016/j.compositesa.2019.03.020

    Article  CAS  Google Scholar 

  77. Abdullah F, Okuyama K-i, Morimitsu A, Yamagata N (2020) Effects of thermal cycle and ultraviolet radiation on 3D Printed carbon fiber/polyether ether ketone ablator. Aerospace 7(7):95. https://doi.org/10.3390/aerospace7070095

    Article  Google Scholar 

  78. Li N, Chen JL, Liu HS, Dong AQ, Wang K, Zhao Y (2019) Effect of preheat treatment on carbon fiber surface properties and fiber/PEEK interfacial behavior. Polym Compos 40:E1407–E1415. https://doi.org/10.1002/pc.25020

    Article  CAS  Google Scholar 

  79. Chabaud G, Castro M, Denoual C, Le Duigou A (2019) Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit Manuf 26:94–105. https://doi.org/10.1016/j.addma.2019.01.005

    Article  CAS  Google Scholar 

  80. Stoof D, Pickering K (2018) Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene. Compos Part B-Eng 135:110–118. https://doi.org/10.1016/j.compositesb.2017.10.005

    Article  CAS  Google Scholar 

  81. Farina I, Singh N, Colangelo F, Luciano R, Bonazzi G, Fraternali F (2019) High-performance nylon-6 sustainable filaments for additive manufacturing. Materials 12(23):3955. https://doi.org/10.3390/ma12233955

    Article  CAS  Google Scholar 

  82. Hong J-H, Yu T, Park S-J, Kim Y-H (2020) Repetitive recycling of 3D printing PLA filament as renewable resources on mechanical and thermal loads. Int J Mod Phys B 34:22–24. https://doi.org/10.1142/s0217979220401475

    Article  CAS  Google Scholar 

  83. Lanzotti A, Martorelli M, Maietta S, Gerbino S, Penta F, Gloria A (2019) A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. In: Teti R, Daddona DM (eds) 12th cirp conference on intelligent computation in manufacturing engineering, vol 79. Procedia CIRP. pp 143–146. doi:https://doi.org/10.1016/j.procir.2019.02.030

  84. Yao Y, Li M, Lackner M, Herfried L (2020) A continuous fiber-reinforced additive manufacturing processing based on PET fiber and PLA. Materials 13(14):3044. https://doi.org/10.3390/ma13143044

    Article  CAS  Google Scholar 

  85. Chiang C-H, Koenig JL (1980) Chemical reactions occurring at the interface of epoxy matrix and aminosilane coupling agents in fiber-reinforced composites. Polym Compos 1(2):88–92. https://doi.org/10.1002/pc.750010207

    Article  CAS  Google Scholar 

  86. Ming YK, Zhang SQ, Han W, Wang B, Duan YG, Xiao H (2020) Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Addit Manuf 33:101184. https://doi.org/10.1016/j.addma.2020.101184

    Article  CAS  Google Scholar 

  87. Wang B, Zhou X, Yin J, Wang L (2013) Investigation on Some matrix-dominated properties of hybrid multiscale composites based on carbon fiber/carbon nanotube modified epoxy. J Appl Polym Sci 128(2):990–996. https://doi.org/10.1002/app.38191

    Article  CAS  Google Scholar 

  88. Szebenyi G, Magyar B, Ivanyicki T (2017) Comparison of static and fatigue interlaminar testing methods for continuous fiber reinforced polymer composites. Polym Test 63:307–313. https://doi.org/10.1016/j.polymertesting.2017.08.033

    Article  CAS  Google Scholar 

  89. Wang B, Han W, Ming Y, Zhang X, Zhu Y, Duan Y, Wang H, Zhao H (2020) Preparation and tribological study of graphene coating on glass fiber-reinforced composite using modified percolating-assisted resin film infusion method. Materials 13(4):851. https://doi.org/10.3390/ma13040851

    Article  CAS  Google Scholar 

  90. Rahimizadeh A, Kalman J, Fayazbakhsh K, Lessard L (2019) Recycling of fiberglass wind turbine blades into reinforced filaments for use in additive manufacturing. Compos Part B-Eng 175:107101. https://doi.org/10.1016/j.compositesb.2019.107101

    Article  CAS  Google Scholar 

  91. Romani A, Mantelli A, Suriano R, Levi M, Turri S (2020) Additive re-manufacturing of mechanically recycled end-of-life glass fiber-reinforced polymers for value-added circular design. Materials 13(16):3545. https://doi.org/10.3390/ma13163545

    Article  CAS  Google Scholar 

  92. Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010. https://doi.org/10.1016/j.compstruct.2017.10.080

    Article  Google Scholar 

  93. Technical Datasheet (2020) http://www.safilin.fr/en/our-collections/#sweet_home. Accessed 25 July 2020

  94. Zhang J, Zhou Z, Zhang F, Tan Y, Tu Y, Yang B (2020) Performance of 3D-printed continuous-carbon-fiber-reinforced plastics with pressure. Materials 13(2):471. https://doi.org/10.3390/ma13020471

    Article  CAS  Google Scholar 

  95. Hu QX, Duan YC, Zhang HG, Liu DL, Yan BA, Peng FJ (2018) Manufacturing and 3D printing of continuous carbon fiber prepreg filament. J Mater Sci 53(3):1887–1898. https://doi.org/10.1007/s10853-017-1624-2

    Article  CAS  Google Scholar 

  96. Iragi M, Pascual-Gonzalez C, Esnaola A, Lopes CS, Aretxabaleta L (2019) Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit Manuf 30:100884. https://doi.org/10.1016/j.addma.2019.100884

    Article  CAS  Google Scholar 

  97. Zhang K, Zhang W, Ding X (2019) Multi-axis additive manufacturing process for continuous fibre reinforced composite parts. In: Kerrigan K, Mativenga P, ElDessouky H (eds) 2nd cirp conference on composite material parts manufacturing, vol 85. Procedia CIRP. pp 114–120. doi:https://doi.org/10.1016/j.procir.2019.09.022

  98. Urhal P, Weightman A, Diver C, Bartolo P (2019) Robot assisted additive manufacturing: a review. Robot Comput-Integr Manuf 59:335–345. https://doi.org/10.1016/j.rcim.2019.05.005

    Article  Google Scholar 

  99. Bhatt PM, Kabir AM, Malhan RK, Shah B, Shembekar AV, Yoon YJ, Gupta SK, Ieee (2019) A robotic cell for multi-resolution additive manufacturing. In: Howard A, Althoefer K, Arai F et al. (eds) 2019 international conference on robotics and automation. IEEE international conference on robotics and automation ICRA. pp 2800–2807

  100. Liu X, Chi B, Jiao Z, Tan J, Liu F, Yang W (2017) A large-scale double-stage-screw 3D printer for fused deposition of plastic pellets. J Appl Polym Sci 134(31):45147. https://doi.org/10.1002/app.45147

    Article  CAS  Google Scholar 

  101. Whyman S, Arif KM, Potgieter J (2018) Design and development of an extrusion system for 3D printing biopolymer pellets. Int J Adv Manuf Technol 96(9):3417–3428. https://doi.org/10.1007/s00170-018-1843-y

    Article  Google Scholar 

  102. Liu SY, Zhao P, Wu SY, Zhang CQ, Fu JZ, Chen ZC (2019) A pellet 3D printer: device design and process parameters optimization. Adv Polym Technol. https://doi.org/10.1155/2019/5075327

    Article  Google Scholar 

  103. Tseng JW, Liu CY, Yen YK, Belkner J, Bremicker T, Liu BH, Sun TJ, Wang AB (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221. https://doi.org/10.1016/j.matdes.2017.11.032

    Article  CAS  Google Scholar 

  104. Wang Y, Xu Z, Wu D, Bai J (2020) Current status and prospects of polymer powder 3D printing technologies. Materials 13(10):2406. https://doi.org/10.3390/ma13102406

    Article  CAS  Google Scholar 

  105. Boyle BM, Xiong PT, Mensch TE, Werder TJ, Miyake GM (2019) 3D printing using powder melt extrusion. Addit Manuf 29:100811. https://doi.org/10.1016/j.addma.2019.100811

    Article  CAS  Google Scholar 

  106. Singamneni S, Warnakula A, Smith DA, Le Guen MJ (2019) Biopolymer alternatives in pellet form for 3D printing by extrusion. 3D Print Addit manf 6(4):217–226. https://doi.org/10.1089/3dp.2018.0152

    Article  Google Scholar 

  107. Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW (2019) Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process. Int J Pharm 567:118471. https://doi.org/10.1016/j.ijpharm.2019.118471

    Article  CAS  Google Scholar 

  108. Liu TF, Tian XY, Zhang YY, Cao Y, Li DC (2020) High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites. Compos Part A-Appl Sci Manuf 130:105770. https://doi.org/10.1016/j.compositesa.2020.105770

    Article  CAS  Google Scholar 

  109. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4(1):22. https://doi.org/10.1002/admt.201800271

    Article  CAS  Google Scholar 

  110. Hou ZH, Tian XY, Zheng ZQ, Zhang JK, Zhe L, Li DC, Malakhov AV, Polilov AN (2020) A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos Part B-Eng 189:107893. https://doi.org/10.1016/j.compositesb.2020.107893

    Article  CAS  Google Scholar 

  111. He Q, Wang H, Fu K, Ye L (2020) 3D printed continuous CF/PA6 composites: effect of microscopic voids on mechanical performance. Compos Sci Technol 191:108077. https://doi.org/10.1016/j.compscitech.2020.108077

    Article  CAS  Google Scholar 

  112. Leon BJ, Guillermo Diaz-Rodriguez J, Andres Gonzalez-Estrada O (2020) Damage of continuous fiber reinforced additive manufacturing components. Uis Ingenierias 19(2):161–175. https://doi.org/10.18273/revuin.v19n2-2020018

    Article  Google Scholar 

  113. Kabir SMF, Mathur K, Seyam AFM (2020) Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites. J Text Inst. https://doi.org/10.1080/00405000.2020.1778223

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Natural Science Foundation of China (Grant 51775324) and the China Scholarship Council (No. 201806895016). The research work was supported by the fund of Austrian-Chinese Cooperative R&D Projects (FFG No.860384). We gratefully acknowledge funding from EU H2020 (through project: 760601) for QJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiguang Zhang or Lanlan He.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Additional information

Handling Editor: Jaime Grunlan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Huang, T., Jiang, Q. et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. J Mater Sci 56, 12999–13022 (2021). https://doi.org/10.1007/s10853-021-06111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06111-w

Navigation