Skip to main content
Log in

Research progress of starch-based biodegradable materials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the enhancement of global environmental protection awareness, new eco-friendly packaging materials have gained more and more attention since the new century. Starch is one of the most potential natural biodegradable materials due to its abundant source, low price, and completely degradable characteristics. Starch-based materials with excellent biodegradability can be widely used by improving their properties. This review starts with the structure of starch and summarizes its phase transition during processing related to the packaging materials. Then, we expound on the development stage of starch-based biodegradable materials and starch modification. This part focuses on the research of starch-based composites formed by starch derivatives, including nano-starch. Besides, extrusion molding and other modern molding methods are described in detail. Through the systematic elaboration of the above contents, the connection among structure, phase transition, and processing can be found, which can better broaden the application of starch-based biodegradable materials. Finally, various applications of starch-based materials and prospects for its future research are discussed. It is hoped to provide the basic theory and reference for the research of starch-based biodegradable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4 
Figure 5
Figure 6
Figure 7 

Similar content being viewed by others

References

  1. Polman EMN, Gruter G-JM, Parsons JR, Tietema A (2021) Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci Total Environ 753:141953. https://doi.org/10.1016/j.scitotenv.2020.141953

    Article  CAS  Google Scholar 

  2. Kakadellis S, Harris ZM (2020) Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment - A critical review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122831

    Article  Google Scholar 

  3. Zuo Y, He X, Li P et al (2019) Preparation and characterization of hydrophobically grafted starches by in situ solid phase polymerization. Polymers (Basel). https://doi.org/10.3390/polym11010072

    Article  Google Scholar 

  4. Punia S (2020) Barley starch: Structure, properties and in vitro digestibility - A review. Int J Biol Macromol 155:868–875. https://doi.org/10.1016/j.ijbiomac.2019.11.219

    Article  CAS  Google Scholar 

  5. Abdullah ZW, Dong Y (2018) Recent advances and perspectives on starch nanocomposites for packaging applications. J Mater Sci 53:15319–15339. https://doi.org/10.1007/s10853-018-2613-9

    Article  CAS  Google Scholar 

  6. Baldwin PM (2001) Starch granule-associated proteins and polypeptides: A review. Starch-Starke 53:475–503. https://doi.org/10.1002/1521-379x(200110)53:10%3c475::Aid-star475%3e3.0.Co;2-e

    Article  Google Scholar 

  7. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: Structure and biosynthesis. Int J Biol Macromol 23:85–112. https://doi.org/10.1016/S0141-8130(98)00040-3

    Article  Google Scholar 

  8. Thakur R, Pristijono P, Scarlett CJ et al (2019) Starch-based films: Major factors affecting their properties. Int J Biol Macromol 132:1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

    Article  CAS  Google Scholar 

  9. Takeda Y, Shitaozono T, Hizukuri S (1990) Structures of sub-fractions of corn amylose. Carbohydr Res 199:207–214. https://doi.org/10.1016/0008-6215(90)84262-S

    Article  CAS  Google Scholar 

  10. Rostamabadi H, Falsafi SR, Jafari SM (2019) Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci Technol 88:397–415. https://doi.org/10.1016/j.tifs.2019.04.004

    Article  CAS  Google Scholar 

  11. Meimoun J, Wiatz V, Saint-Loup R et al (2018) Modification of starch by graft copolymerization. Starch/Staerke 70:1–23. https://doi.org/10.1002/star.201600351

    Article  CAS  Google Scholar 

  12. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36:277–284. https://doi.org/10.1016/S0144-8617(98)00007-1

    Article  CAS  Google Scholar 

  13. Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17:315–321. https://doi.org/10.1016/0141-8130(96)81838-1

    Article  CAS  Google Scholar 

  14. Kim H-Y, Park SS, Lim S-T (2015) Preparation, characterization and utilization of starch nanoparticles. Colloids Surfaces B Biointerfaces 126:607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011

    Article  CAS  Google Scholar 

  15. Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39:151–165. https://doi.org/10.1016/j.jcs.2003.12.001

    Article  CAS  Google Scholar 

  16. Zobel HF (1988) Starch Crystal Transformations and Their Industrial Importance. Starch - Stärke 40:1–7. https://doi.org/10.1002/star.19880400102

    Article  CAS  Google Scholar 

  17. Matignon A, Tecante A (2017) Starch retrogradation: From starch components to cereal products. Food Hydrocoll 68:43–52. https://doi.org/10.1016/j.foodhyd.2016.10.032

    Article  CAS  Google Scholar 

  18. Putseys JA, Lamberts L, Delcour JA (2010) Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J Cereal Sci 51:238–247. https://doi.org/10.1016/j.jcs.2010.01.011

    Article  CAS  Google Scholar 

  19. Waigh TA, Perry P, Riekel C et al (1998) Chiral side-chain liquid-crystalline polymeric properties of starch. Macromolecules 31:7980–7984. https://doi.org/10.1021/ma971859c

    Article  CAS  Google Scholar 

  20. Pérez S, Baldwin PM, Gallant DJ (2009) Chapter 5 - Structural Features of Starch Granules I. In: Third E (ed) BeMiller J, Whistler RBT-S. Food Science and Technology. Academic Press, San Diego, pp 149–192

    Google Scholar 

  21. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191. https://doi.org/10.1016/S0144-8617(97)00008-8

    Article  CAS  Google Scholar 

  22. Song S, Wang C, Pan Z, Wang X (2008) Preparation and characterization of amphiphilic starch nanocrystals. J Appl Polym Sci 107:418–422. https://doi.org/10.1002/app.27076

    Article  CAS  Google Scholar 

  23. Jayakody L, Hoover R (2002) The effect of lintnerization on cereal starch granules. Food Res Int 35:665–680. https://doi.org/10.1016/S0963-9969(01)00204-6

    Article  CAS  Google Scholar 

  24. Gérard C, Colonna P, Buléon A, Planchot V (2002) Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr Polym 48:131–141. https://doi.org/10.1016/S0144-8617(01)00219-3

    Article  Google Scholar 

  25. Wei BX, Hu XT, Li HY et al (2014) Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium. Food Hydrocoll 36:369–373. https://doi.org/10.1016/j.foodhyd.2013.08.015

    Article  CAS  Google Scholar 

  26. LeCorre D, Bras J, Dufresne A (2011) Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J Nanoparticle Res 13:7193–7208. https://doi.org/10.1007/s11051-011-0634-2

    Article  CAS  Google Scholar 

  27. Liao LS, Liu HS, Liu XX et al (2014) Development of microstructures and phase transitions of starch. Acta Polym Sin. https://doi.org/10.3724/sp.J.1105.2014.13450

    Article  Google Scholar 

  28. Zhu J, Chen H, Lu K et al (2020) Recent progress on starch-based biodegradable materials. Acta Polym Sin 51:983–995. https://doi.org/10.11777/j.issn1000-3304.2020.20089

    Article  Google Scholar 

  29. Wang SJ, Copeland L (2013) Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct 4:1564–1580. https://doi.org/10.1039/c3fo60258c

    Article  CAS  Google Scholar 

  30. Matveev YI, Van Soest JJG, Nieman C et al (2001) Relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr Polym 44:151–160. https://doi.org/10.1016/S0144-8617(00)00211-3

    Article  CAS  Google Scholar 

  31. Liu H, Yu L, Xie F, Chen L (2006) Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr Polym 65:357–363. https://doi.org/10.1016/j.carbpol.2006.01.026

    Article  CAS  Google Scholar 

  32. Burros BC, Young LA, Carroad PA (1987) Kinetics of corn meal gelatinization at high temperature and low moisture. J Food Sci 52:1372–1376. https://doi.org/10.1111/j.1365-2621.1987.tb14085.x

    Article  Google Scholar 

  33. Ottenhof M-A, Farhat IA (2004) Starch retrogradation. Biotechnol Genet Eng Rev 21:215–228. https://doi.org/10.1080/02648725.2004.10648056

    Article  CAS  Google Scholar 

  34. Buleon A, Veronese G, Putaux JL (2007) Self-association and crystallization of amylose. Aust J Chem 60:706–718. https://doi.org/10.1071/ch07168

    Article  CAS  Google Scholar 

  35. Kalichevsky MT, Ring SG (1987) Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr Res 162:323–328. https://doi.org/10.1016/0008-6215(87)80229-X

    Article  CAS  Google Scholar 

  36. Fu Z, Wang L, Li D et al (2013) The effect of partial gelatinization of corn starch on its retrogradation. Carbohydr Polym 97:512–517. https://doi.org/10.1016/j.carbpol.2013.04.089

    Article  CAS  Google Scholar 

  37. Doona CJ, Feeherry FE, Baik M-Y (2006) Water dynamics and retrogradation of ultrahigh pressurized wheat starch. J Agric Food Chem 54:6719–6724. https://doi.org/10.1021/jf061104h

    Article  CAS  Google Scholar 

  38. Fisher DK, Thompson DB (1997) Retrogradation of maize starch after thermal treatment within and above the gelatinization temperature range. Cereal Chem 74:344–351. https://doi.org/10.1094/CCHEM.1997.74.3.344

    Article  CAS  Google Scholar 

  39. Liu X, Yu L, Xie F et al (2010) Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Staerke 62:139–146. https://doi.org/10.1002/star.200900202

    Article  CAS  Google Scholar 

  40. Liu X, Yu L, Liu H et al (2009) Thermal decomposition of corn starch with different Amylose/Amylopectin ratios in open and sealed systems. Cereal Chem 86:383–385. https://doi.org/10.1094/CCHEM-86-4-0383

    Article  CAS  Google Scholar 

  41. Liu X, Yu L, Liu H et al (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93:260–262. https://doi.org/10.1016/j.polymdegradstab.2007.09.004

    Article  CAS  Google Scholar 

  42. Li Z, Wei C (2020) Morphology, structure, properties and applications of starch ghost: a review. Int J Biol Macromol 163:2084–2096. https://doi.org/10.1016/j.ijbiomac.2020.09.077

    Article  CAS  Google Scholar 

  43. Atkin NJ, Abeysekera RM, Robards AW (1998) The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydr Polym 36:193–204. https://doi.org/10.1016/S0144-8617(98)00002-2

    Article  CAS  Google Scholar 

  44. Adler J, Baldwin PM, Melia CD (1995) Starch damage part 2: types of damage in ball-milled potato starch, upon hydration observed by confocal microscopy. Starch - Stärke 47:252–256. https://doi.org/10.1002/star.19950470703

    Article  CAS  Google Scholar 

  45. Liu H, Eskin NAM, Cui SW (2003) Interaction of wheat and rice starches with yellow mustard mucilage. Food Hydrocoll 17:863–869. https://doi.org/10.1016/S0268-005X(03)00107-3

    Article  CAS  Google Scholar 

  46. Garcia-Hernandez A, Vernon-Carter EJ, Alvarez-Ramirez J (2017) Impact of ghosts on the mechanical, optical, and barrier properties of corn starch films. Starch - Stärke 69:1600308. https://doi.org/10.1002/star.201600308

    Article  CAS  Google Scholar 

  47. Gómez-Luría D, Vernon-Carter EJ, Alvarez-Ramirez J (2017) Films from corn, wheat, and rice starch ghost phase fractions display overall superior performance than whole starch films. Starch - Stärke 69:1700059. https://doi.org/10.1002/star.201700059

    Article  CAS  Google Scholar 

  48. Jin Z, Wang Y, Li X et al (2019) Research progress on starch-based biodegradable materials. J Chinese Inst Food Sci Technol 19:1–7

    Google Scholar 

  49. Zhengwei Z, Penggang R (2008) Research status of starch-based biodegradable plastic. Mater Rev 22:44–47

    Google Scholar 

  50. Gómez-Aldapa CA, Velazquez G, Gutierrez MC et al (2020) Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122027

    Article  Google Scholar 

  51. Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias A (2013) Thermoplastic starches: Properties, challenges, and prospects. Starch-Starke 65:61–72. https://doi.org/10.1002/star.201200201

    Article  CAS  Google Scholar 

  52. Zhang KY, Ran XH, Wu H et al (2009) Preparation and characterization of a novel thermoplastic starch using dimethyl sulfoxide as the plasticizer. Chem J Chinese Univ 30:1662–1667

    CAS  Google Scholar 

  53. Borowski G, Klepka T, Pawłowska M et al (2020) Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch. Arch Environ Prot 46:74–82. https://doi.org/10.24425/aep.2020.133477

    Article  Google Scholar 

  54. Tajuddin S, Xie F, Nicholson TM et al (2011) Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydr Polym 83:914–919. https://doi.org/10.1016/j.carbpol.2010.08.073

    Article  CAS  Google Scholar 

  55. Zhou W, Zha D, Zhang X et al (2020) Ordered long polyvinyl alcohol fiber-reinforced thermoplastic starch composite having comparable mechanical properties with polyethylene and polypropylene. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116913

    Article  Google Scholar 

  56. Yimnak K, Thipmanee R, Sane A (2020) Poly(butylene adipate-co-terephthalate)/thermoplastic starch/zeolite 5A films: Effects of compounding sequence and plasticizer content. Int J Biol Macromol 164:1037–1045. https://doi.org/10.1016/j.ijbiomac.2020.07.169

    Article  CAS  Google Scholar 

  57. Sweedman MC, Tizzotti MJ, Schäfer C, Gilbert RG (2013) Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr Polym 92:905–920. https://doi.org/10.1016/j.carbpol.2012.09.040

    Article  CAS  Google Scholar 

  58. Majzoobi M, Kaveh Z, Blanchard CL, Farahnaky A (2015) Physical properties of pregelatinized and granular cold water swelling maize starches in presence of acetic acid. Food Hydrocoll 51:375–382. https://doi.org/10.1016/j.foodhyd.2015.06.002

    Article  CAS  Google Scholar 

  59. El Halal SLM, Colussi R, Pinto VZ et al (2015) Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chem 168:247–256. https://doi.org/10.1016/j.foodchem.2014.07.046

    Article  CAS  Google Scholar 

  60. Deka D, Sit N (2016) Dual modification of taro starch by microwave and other heat moisture treatments. Int J Biol Macromol 92:416–422. https://doi.org/10.1016/j.ijbiomac.2016.07.040

    Article  CAS  Google Scholar 

  61. Ashogbon AO, Akintayo ET (2014) Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Starke 66:41–57. https://doi.org/10.1002/star.201300106

    Article  CAS  Google Scholar 

  62. Diao X, Weng Y (2017) Research progress and industrial present status of starch-based plastics. China Plast 31:22–29

    Google Scholar 

  63. Punia S (2020) Barley starch modifications: physical, chemical and enzymatic - a review. Int J Biol Macromol 144:578–585. https://doi.org/10.1016/j.ijbiomac.2019.12.088

    Article  CAS  Google Scholar 

  64. Shanhai D, Daqing XU, Ming M et al (2007) Review on advance of modified starch based on physical methods. Food Sci 28:361–366

    Google Scholar 

  65. Kirsh I, Frolova Y, Bannikova O et al (2020) Research of the influence of the ultrasonic treatment on the melts of the polymeric compositions for the creation of packaging materials with antimicrobial properties and biodegradability. Polymers (Basel). https://doi.org/10.3390/polym12020275

    Article  Google Scholar 

  66. Kapelko M, Ziȩba T, Michalski A, Gryszkin A (2015) Effect of cross-linking degree on selected properties of retrograded starch adipate. Food Chem 167:124–130. https://doi.org/10.1016/j.foodchem.2014.06.096

    Article  CAS  Google Scholar 

  67. Franssen MCR, Boeriu CG (2014) Chemically Modified Starch. Their Synthesis and Characterization. Elsevier B.V, Allyl- and Epoxy-Starch Derivatives

    Google Scholar 

  68. Cysewski P, Gackowska A, Gaca J (2006) Experimental and theoretical studies on formation and degradation of chloro organic compounds. Chemosphere 63:165–170. https://doi.org/10.1016/j.chemosphere.2005.06.061

    Article  CAS  Google Scholar 

  69. Ratnayake WS, Jackson DS (2008) Chapter 5 starch gelatinization. Adv Food Nutr Res 55:221–268. https://doi.org/10.1016/S1043-4526(08)00405-1

    Article  CAS  Google Scholar 

  70. Zhong K, Lin ZT, Zheng XL et al (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376. https://doi.org/10.1016/j.carbpol.2012.10.030

    Article  CAS  Google Scholar 

  71. Mehfooz T, Ali TM, Hasnain A (2019) Effect of cross-linking on characteristics of succinylated and oxidized barley starch. J Food Meas Charact 13:1058–1069. https://doi.org/10.1007/s11694-018-00021-3

    Article  Google Scholar 

  72. Congming X (2013) Current advances of chemical and physical starch-based hydrogels. Starch/Staerke 65:82–88

    Article  Google Scholar 

  73. Yu C, Tang XZ, Liu SW et al (2018) Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption. Int J Biol Macromol 117:1–6. https://doi.org/10.1016/j.ijbiomac.2018.05.159

    Article  CAS  Google Scholar 

  74. Arora B, Yoon A, Sriram M et al (2020) Reactive extrusion: A review of the physicochemical changes in food systems. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2020.102429

    Article  Google Scholar 

  75. Xie FW, Yu L, Liu HS, Chen L (2006) Starch modification using reactive extrusion. Starch-Starke 58:131–139. https://doi.org/10.1002/star.200500407

    Article  CAS  Google Scholar 

  76. Moad G (2011) Chemical modification of starch by reactive extrusion. Prog Polym Sci 36:218–237. https://doi.org/10.1016/j.progpolymsci.2010.11.002

    Article  CAS  Google Scholar 

  77. Rodriguez Llanos JH, Tadini CC, Gastaldi E (2021) New strategies to fabricate starch/chitosan-based composites by extrusion. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2020.110224

    Article  Google Scholar 

  78. Yang J, Li F, Li M et al (2017) Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr Polym 173:223–232. https://doi.org/10.1016/j.carbpol.2017.06.006

    Article  CAS  Google Scholar 

  79. Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M (2020) Encapsulation of fucoxanthin in binary matrices of porous starch and halloysite. Food Hydrocoll 100:105458. https://doi.org/10.1016/j.foodhyd.2019.105458

    Article  CAS  Google Scholar 

  80. Li Y, Zhao X, Wang L et al (2018) Preparation, characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability. Carbohydr Polym 202:125–133. https://doi.org/10.1016/j.carbpol.2018.08.127

    Article  CAS  Google Scholar 

  81. Chin SF, Yazid S, Pang SC (2014) Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int J Polym Sci 2014:8. https://doi.org/10.1155/2014/340121

    Article  CAS  Google Scholar 

  82. Pérez-Masiá R, López-Nicolás R, Periago MJ et al (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133. https://doi.org/10.1016/j.foodchem.2014.07.051

    Article  CAS  Google Scholar 

  83. Kong L, Ziegler GR (2014) Fabrication of pure starch fibers by electrospinning. Food Hydrocoll 36:20–25. https://doi.org/10.1016/j.foodhyd.2013.08.021

    Article  CAS  Google Scholar 

  84. Haaj SB, Magnin A, Petrier C, Boufi S (2013) Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym 92:1625–1632. https://doi.org/10.1016/j.carbpol.2012.11.022

    Article  CAS  Google Scholar 

  85. Chin SF, Pang SC, Tay SH (2011) Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym 86:1817–1819. https://doi.org/10.1016/j.carbpol.2011.07.012

    Article  CAS  Google Scholar 

  86. Boufi S, Bel Haaj S, Magnin A et al (2018) Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrason Sonochem 41:327–336. https://doi.org/10.1016/j.ultsonch.2017.09.033

    Article  CAS  Google Scholar 

  87. Lan X, Xie S, Wu J et al (2016) Thermal and enzymatic degradation induced ultrastructure changes in canna starch: Further insights into short-range and long-range structural orders. Food Hydrocoll 58:335–342. https://doi.org/10.1016/j.foodhyd.2016.02.018

    Article  CAS  Google Scholar 

  88. Ashogbon AO (2020) Dual modification of various starches: Synthesis, properties and applications. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128325

    Article  Google Scholar 

  89. Virtanen T, Autio K, Suortti T, Poutanen K (1993) Heat-induced changes in native and acid-modified oat starch pastes. J Cereal Sci 17:137–145. https://doi.org/10.1006/jcrs.1993.1014

    Article  Google Scholar 

  90. Wang LF, Wang YJ (2001) Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch-Starke 53:570–576. https://doi.org/10.1002/1521-379x(200111)53:11%3c570::Aid-star570%3e3.0.Co;2-s

    Article  CAS  Google Scholar 

  91. You S, Izydorczyk MS (2007) Comparison of the physicochemical properties of barley starches after partial α-amylolysis and acid/alcohol hydrolysis. Carbohydr Polym 69:489–502. https://doi.org/10.1016/j.carbpol.2007.01.002

    Article  CAS  Google Scholar 

  92. Li Y, Li C, Gu Z et al (2017) Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch. Int J Biol Macromol 103:630–639. https://doi.org/10.1016/j.ijbiomac.2017.05.045

    Article  CAS  Google Scholar 

  93. Dey A, Sit N (2017) Modification of foxtail millet starch by combining physical, chemical and enzymatic methods. Int J Biol Macromol 95:314–320. https://doi.org/10.1016/j.ijbiomac.2016.11.067

    Article  CAS  Google Scholar 

  94. Li H, Gui Y, Li J et al (2020) Modification of rice starch using a combination of autoclaving and triple enzyme treatment: Structural, physicochemical and digestibility properties. Int J Biol Macromol 144:500–508. https://doi.org/10.1016/j.ijbiomac.2019.12.112

    Article  CAS  Google Scholar 

  95. Guo L, Tao H, Cui B, Janaswamy S (2019) The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chem 277:504–514. https://doi.org/10.1016/j.foodchem.2018.11.014

    Article  CAS  Google Scholar 

  96. Sun J, He R-M, Gao F-Y et al (2019) High-efficient preparation of cross-linked cassava starch by microwave-ultrasound-assisted and its physicochemical properties. Starch - Stärke 71:1800273. https://doi.org/10.1002/star.201800273

    Article  CAS  Google Scholar 

  97. Benavent-Gil Y, Rosell CM (2017) Comparison of porous starches obtained from different enzyme types and levels. Carbohydr Polym 157:533–540. https://doi.org/10.1016/j.carbpol.2016.10.047

    Article  CAS  Google Scholar 

  98. Jumaidin R, Khiruddin MAA, Asyul Sutan Saidi Z et al (2020) Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int J Biol Macromol 146:746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011

    Article  CAS  Google Scholar 

  99. El Halal SLM, Colussi R, Biduski B et al (2017) Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. J Sci Food Agric 97:411–419. https://doi.org/10.1002/jsfa.7773

    Article  CAS  Google Scholar 

  100. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. https://doi.org/10.1016/j.foodcont.2020.107086

    Article  CAS  Google Scholar 

  101. Bruni GP, de Oliveira JP, Fonseca LM et al (2020) Biocomposite films based on phosphorylated wheat starch and cellulose nanocrystals from rice, oat, and eucalyptus husks. Starch/Staerke 72:1–8. https://doi.org/10.1002/star.201900051

    Article  CAS  Google Scholar 

  102. Tabasum S, Younas M, Zaeem MA et al (2019) A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 122:969–996. https://doi.org/10.1016/j.ijbiomac.2018.10.092

    Article  CAS  Google Scholar 

  103. Silveira Hornung P, Ávila S, Apea-Bah FB et al (2020) Sustainable Use of Ilex paraguariensis waste in improving biodegradable corn starch films’ mechanical, thermal and bioactive properties. J Polym Environ 28:1696–1709. https://doi.org/10.1007/s10924-020-01723-w

    Article  CAS  Google Scholar 

  104. Ali A, Chen Y, Liu H et al (2019) Starch-based antimicrobial films functionalized by pomegranate peel. Int J Biol Macromol 129:1120–1126. https://doi.org/10.1016/j.ijbiomac.2018.09.068

    Article  CAS  Google Scholar 

  105. Amer MS, Ganapathiraju S (2001) Effects of processing parameters on axial stiffness of self-reinforced polyethylene composites. J Appl Polym Sci 81:1136–1141. https://doi.org/10.1002/app.1536

    Article  CAS  Google Scholar 

  106. Hine PJ, Olley RH, Ward IM (2008) The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos Sci Technol 68:1413–1421. https://doi.org/10.1016/j.compscitech.2007.11.003

    Article  CAS  Google Scholar 

  107. Manninen MJ, Päivärinta U, Pätiälä H et al (1992) Shear strength of cancellous bone after osteotomy fixed with absorbable self-reinforced polyglycolic acid and poly-L-lactic acid rods. J Mater Sci Mater Med 3:245–251. https://doi.org/10.1007/BF00705288

    Article  CAS  Google Scholar 

  108. Suuronen R, Wessman L, Mero M et al (1992) Comparison of shear strength of osteotomies fixed with absorbable self-reinforced poly-L-lactide and metallic screws. J Mater Sci Mater Med 3:288–292. https://doi.org/10.1007/BF00705295

    Article  CAS  Google Scholar 

  109. Gao C, Yu L, Liu H, Chen L (2012) Development of self-reinforced polymer composites. Prog Polym Sci 37:767–780. https://doi.org/10.1016/j.progpolymsci.2011.09.005

    Article  CAS  Google Scholar 

  110. Gao C, Meng L, Yu L et al (2015) Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites. Compos Sci Technol 117:392–397. https://doi.org/10.1016/j.compscitech.2015.07.006

    Article  CAS  Google Scholar 

  111. Lan C, Liu H, Chen P et al (2010) Gelatinization and retrogradation of hydroxypropylated cornstarch. Int J Food Eng. https://doi.org/10.2202/1556-3758.1905

    Article  Google Scholar 

  112. Rindlav-Westling Å, Stading M, Hermansson AM, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36:217–224. https://doi.org/10.1016/S0144-8617(98)00025-3

    Article  CAS  Google Scholar 

  113. Rauwendaal C (2001) Polymer Extrusion, 4th edn. Carl Hanser Verlag, Munich

    Google Scholar 

  114. Giles HF, Wagner JR, Mount EM (2005) Extrusion: the definition processing guide and handbook. Plastics Design Library, New York

    Google Scholar 

  115. Bouvier J-M, Campanella OH (2014) Extrusion Processing Technology. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  116. Zhou W, Chen C, Yin P et al (2019) research progress in processing and molding of starch plastics. China Plast Ind 47:1–6

    Google Scholar 

  117. Rodriguez-Castellanos W, Flores-Ruiz FJ, Martinez-Bustos F et al (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132:7. https://doi.org/10.1002/app.41787

    Article  CAS  Google Scholar 

  118. Rodriguez-Castellanos W, Martinez-Bustos F, Rodrigue D, Trujillo-Barragan M (2015) Extrusion blow molding of a starch-gelatin polymer matrix reinforced with cellulose. Eur Polym J 73:335–343. https://doi.org/10.1016/j.eurpolymj.2015.10.029

    Article  CAS  Google Scholar 

  119. Przybytek A, Sienkiewicz M, Kucinska-Lipka J, Janik H (2018) Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Ind Crops Prod 122:375–383. https://doi.org/10.1016/j.indcrop.2018.06.016

    Article  CAS  Google Scholar 

  120. Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623. https://doi.org/10.1016/j.progpolymsci.2011.07.002

    Article  CAS  Google Scholar 

  121. Madhumitha G, Fowsiya J, Roopan SM, Thakur VK (2018) Recent advances in starch-clay nanocomposites. Int J Polym Anal Charact 23:331–345. https://doi.org/10.1080/1023666x.2018.1447260

    Article  CAS  Google Scholar 

  122. de Azevedo LC, Rovani S, Santos JJ et al (2020) Biodegradable films derived from corn and potato starch and study of the effect of silicate extracted from sugarcane waste ash. ACS Appl Polym Mater 2:2160–2169. https://doi.org/10.1021/acsapm.0c00124

    Article  CAS  Google Scholar 

  123. Abdullah ZW, Dong Y (2018) Preparation and characterisation of poly(vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. J Mater Sci 53:3455–3469. https://doi.org/10.1007/s10853-017-1812-0

    Article  CAS  Google Scholar 

  124. Liu J, Sun L, Xu W et al (2019) Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077

    Article  CAS  Google Scholar 

  125. Zeng JB, Li KA, Du AK (2015) Compatibilization strategies in poly(lactic acid)-based blends. Rsc Adv 5:32546–32565. https://doi.org/10.1039/c5ra01655j

    Article  CAS  Google Scholar 

  126. Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54:944–967. https://doi.org/10.1080/03602559.2014.979507

    Article  CAS  Google Scholar 

  127. Li X, Liu W, Sun L et al (2014) Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration. Biomed Res Int 2014:542958. https://doi.org/10.1155/2014/542958

    Article  Google Scholar 

  128. Kuo C-C, Liu L-C, Teng W-F et al (2016) Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B Eng 86:36–39. https://doi.org/10.1016/j.compositesb.2015.10.005

    Article  CAS  Google Scholar 

  129. Bilo F, Pandini S, Sartore L et al (2018) A sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368. https://doi.org/10.1016/j.jclepro.2018.07.252

    Article  CAS  Google Scholar 

  130. Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM (2018) Production of biodegradable plastic from agricultural wastes. Arab J Chem 11:546–553. https://doi.org/10.1016/j.arabjc.2015.04.008

    Article  CAS  Google Scholar 

  131. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydr Polym 101:20–28. https://doi.org/10.1016/j.carbpol.2013.08.080

    Article  CAS  Google Scholar 

  132. German DP, Chacon SS, Allison SD (2011) Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92:1471–1480. https://doi.org/10.1890/10-2028.1

    Article  Google Scholar 

  133. Warren RAJ (1996) Micobial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212. https://doi.org/10.1146/annurev.micro.50.1.183

    Article  CAS  Google Scholar 

  134. Tang XZ, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16. https://doi.org/10.1016/j.carbpol.2011.01.030

    Article  CAS  Google Scholar 

  135. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers - a review. Polish J Environ Stud 19:255–266

    Google Scholar 

  136. Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. https://doi.org/10.1038/nature10386

    Article  CAS  Google Scholar 

  137. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069

    Article  CAS  Google Scholar 

  138. Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: a review. J Mater Sci 54:12290–12318. https://doi.org/10.1007/s10853-019-03742-y

    Article  CAS  Google Scholar 

  139. Zhang S, Zhao H (2017) Preparation and properties of zein-rutin composite nanoparticle/corn starch films. Carbohydr Polym 169:385–392. https://doi.org/10.1016/j.carbpol.2017.04.044

    Article  CAS  Google Scholar 

  140. Khairuddin N, Muhamad II, Abd Rahman WAW, Siddique BM (2020) Physicochemical and thermal characterization of hydroxyethyl cellulose - Wheat starch based films incorporated thymol intended for active packaging. Sains Malaysiana 49:323–333. https://doi.org/10.17576/jsm-2020-4902-10

    Article  CAS  Google Scholar 

  141. Dang XG, Shan ZH, Chen H (2016) The preparation and applications of one biodegradable liquid film mulching by oxidized corn starch-gelatin composite. Appl Biochem Biotechnol 180:917–929. https://doi.org/10.1007/s12010-016-2142-4

    Article  CAS  Google Scholar 

  142. Azeem B, KuShaari K, Naqvi M et al (2020) Production and characterization of controlled release urea using biopolymer and geopolymer as coating materials. Polymers (Basel). https://doi.org/10.3390/polym12020400

    Article  Google Scholar 

  143. Chi K, Wang H, Catchmark JM (2020) Sustainable starch-based barrier coatings for packaging applications. Food Hydrocoll 103:105696. https://doi.org/10.1016/j.foodhyd.2020.105696

    Article  CAS  Google Scholar 

  144. Zhu PH, Kuang YD, Chen G et al (2018) Starch/polyvinyl alcohol (PVA)-coated painting paper with exceptional organic solvent barrier properties for art preservation purposes. J Mater Sci 53:5450–5457. https://doi.org/10.1007/s10853-017-1924-6

    Article  CAS  Google Scholar 

  145. Chauhan JK, Yadav D, Yadav M et al (2020) NaClO4 added, corn and arrowroot starch based economical, high conducting electrolyte membranes for flexible energy devices. SN Appl Sci 2:1–12. https://doi.org/10.1007/s42452-020-2660-0

    Article  CAS  Google Scholar 

  146. Zhu CJ, Chen J, Liu SS et al (2018) Improved electrochemical performance of bagasse and starch-modified LiNi0.5Mn0.3Co0.2O2 materials for lithium-ion batteries. J Mater Sci 53:5242–5254. https://doi.org/10.1007/s10853-017-1926-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National “Thirteenth Five-Year” Plan for Science & Technology Support of China (No.2016YFD0400304), Jiangsu Agriculture Science and Technology Innovation Fund (CX(17)2022), the Science & Technology Pillar Program of Jiangsu Province (BE2018304), and Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology (FM-201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiquan Jiao.

Ethics declarations

Conflict of interest

No conflicts of interest are declared for any of the authors.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Chen, L., Jin, Z. et al. Research progress of starch-based biodegradable materials: a review. J Mater Sci 56, 11187–11208 (2021). https://doi.org/10.1007/s10853-021-06063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06063-1

Navigation